Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Electron Scattering
  • Absorption Due to Free-free Transitions
  • Bound-free Transitions
  • Bound-bound Transitions
  • The Negative Hydrogen Ion ($\ce{H-}$)
  • An Example: Stellar Pulsation
  1. 恒星结构与演化

Chapter 8. Opacity

PreviousChapter 10 PolytropeNextChapter 14. Protostar

Last updated 4 years ago

In this chapter we deal with the opacity $\kappa(\rho,T)$ [cm$^2$/g], which corresponds to the efficiency of energy transport via radiation.

In optically thick gas, energy is transported via photon diffusion. As is discussed in , we have

Fν=−c3ρκνdeintdrF_\nu=-\frac{c}{3\rho\kappa_\nu}\frac{\text de_\text{int}}{\text dr}Fν​=−3ρκν​c​drdeint​​

where $e\text{int}$ is given by the blackbody radiation luminosity $B\nu$

eint=4πcBν(T)=8πhν3c31ehν/kBT−1e_\text{int}=\frac{4\pi}cB_\nu(T)=\frac{8\pi h\nu^3}{c^3}\frac1{e^{h\nu/k_BT}-1}eint​=c4π​Bν​(T)=c38πhν3​ehν/kB​T−11​

Thus

Fν=−4π3ρκν∂Bν∂T∂T∂rF_\nu=-\frac{4\pi}{3\rho\kappa_\nu}\frac{\partial B_\nu}{\partial T}\frac{\partial T}{\partial r}Fν​=−3ρκν​4π​∂T∂Bν​​∂r∂T​

The total flux is

F=−4ac3ρκRT3∂T∂rF=-\frac{4ac}{3\rho\kappa_R}T^3\frac{\partial T}{\partial r}F=−3ρκR​4ac​T3∂r∂T​

where $\kappa_R$ is the Rosseland mean opacity. Obviously, the efficiency of energy transported outward is inversely proportional to the opacity.

We can further define optical depth $\tau$,

So when $\tau\gg1$ so that energy is transported via photon diffusion, the flux is approximately

Electron Scattering

If an electromagnetic wave passes an electron, the electric field makes the electron oscillate. The oscillating electron represents a classical dipole that radiates in other directions, i.e. the electron scatters part of the energy of the incoming waves.

From classical electrodynamics, elastic scattering of non-relativistic electrons, namely Thomson scattering, yields a cross section of

where $r_\text e$ is the classical electron radius. Thus the opacity is

This opacity is $\nu$-independent, but when $T>10^8$ K, $\kappa\nu$ slightly decreases ($\sim20\%$ at $10^8$ K) for higher $T$. At that time the kinetic energy of electron is over $\sim10$ keV, $\gtrsim1\%$ of $m\text{e}c^2$. Therefore relativistic corrections (Compton scattering) become important.

Absorption Due to Free-free Transitions

If during its thermal motion a free electron passes an ion, the two charged particles form a system which can absorb and emit radiation. This mechanism is only effective as long as electron and ion are sufficiently close.

Let us first consider the emissivity $\varepsilon_\nu^\text{ff}$ [erg/s/cm$^3$/Hz]. In a super, super rough estimation, it should be proportional to the densities of both electron and ions, as well as the duration of the fly-by, which inversely proportional to the magnitude of their relative velocity.

Assuming the thermal equilibrium, electrons obey the Boltzmann distribution, $|v|\propto T^{1/2}$. As a result,

Thus the opacity due to free-free transitions is

The second equation is given by Kirchhoff's law of thermal radiation, which states that

For a body of any arbitrary material emitting and absorbing thermal electromagnetic radiation at every wavelength in thermodynamic equilibrium, the ratio of its emissive power to its dimensionless coefficient of absorption is equal to a universal function only of radiative wavelength and temperature. That universal function describes the perfect black-body emissive power.

And thus

where the absorption coefficient $\alpha\nu\equiv\rho\kappa\nu$ [1/cm] denotes the attentuation of radiation per unit distance. So,

And the Rosseland mean opacity is

This $\rho T^{-7/2}$ dependence is known as the Kramer's law. Precise derivation gives,

Bound-free Transitions

The best-known example is ionization of atoms. For a hydrogen atom at its ground state, the ionization process is

\ce{H + \gamma -> H+ + e-}

Here the energy of $\gamma$ must be higher than 13.6 eV, otherwise this reaction will not occur. In other words, for $h\nuh\nu0$, $\alpha\nu\propto\nu^{-3}$. Different excitation states have different $\nu0$. The opacity $\kappa^\text{bf}{\nu}$ for a mixture of hydrogen atoms in different states of excitation is a superposition of $\alpha\nu$ for different stages of excitation. The resulting $\kappa^\text{bf}{\nu}$􏰁􏰂 is a sawtooth function.

The relative scale of $\kappa^\text{bf}{\nu}$ comparing to $\kappa^\text{ff}{\nu}$ is approximately

where $Z$ is the metalicity. $Z_\odot\sim0.02$.

Bound-bound Transitions

$\kappa^\text{bb}_\nu$ is the superposition for opacity due to numerous possiblities of line adsorption. The dependency on $\nu$ is thus really messy.

The Negative Hydrogen Ion ($\ce{H-}$)

At a sufficiently low temperature, protons and electrons start to recombine. When it gets even cooler, $\ce{H-}$ begins to effectively form via

\ce{H + e- -> H- + \gamma}

$\ce {H-}$ can also contribute to the opacity through photo-dissociation

\ce{H- + \gamma -> H + e-}

With Saha equation, we can estimate the $\ce{H-}$ fraction as a function of temperature and density. Then we can obtain the Rosseland mean opacity

\kappa^{\ce{H-}}\simeq2.5\times10^{-31}\left(\frac{Z}{Z_\odot}\right)\left(\frac{\rho}{\text{g}\cdot\text{cm}^3}\right)\left(\frac{T}{\text K}\right)^{9}\text{ cm}^2\text{/g}

when $3000<T\text{ [K]}<6000$ and $10^{-10}<\rho \text{ [g/cm}^3]<10^{-5}$.

An Example: Stellar Pulsation

Consider that in an atmosphere, the energy is transported via radiation, then a small perturbation in the luminosity is given by

Define

Then we have

For simplicity, let us consider adiabatic perturbation for ideal gas

As a result,

  • Case 1: $\kappa=\kappa^\text{es}\Rightarrow \kappa_\rho=0, \kappa_T=0$

    When the temperature slightly increases, more energy will be radiated outwards within unit time. Thus the star is stable.

  • Case 2: $\kappa=\kappa^\text{ff}\Rightarrow \kappa_\rho=1, \kappa_T=-7/2$

    Similarly, the star is stable.

  • Case 3: $\kappa=\kappa^\ce{H-}\Rightarrow \kappa_\rho=1/2, \kappa_T=9$

    The star is unstable and will excite pulsation. This happens for Cepheids, whose envelops are relatively cool.

In fact, given certain stellar mass and metallicity, each star has a $\log\kappa-\log T$ profile. The temperature regions with negative slope are vulnerable of pulsation.

τν=∫ρκνdr∼ρκνr\tau_\nu=\int\rho\kappa_\nu\text dr\sim\rho\kappa_\nu rτν​=∫ρκν​dr∼ρκν​r
F∼acT4ρκr∼σSBT4τF\sim\frac{acT^4}{\rho\kappa r}\sim\frac{\sigma_{SB}T^4}{\tau}F∼ρκracT4​∼τσSB​T4​
σT=8π3re2\sigma_T=\frac{8\pi}{3}{r_\text e^2}σT​=38π​re2​
κνes=8π3re2μemp≃0.35 cm2/g\kappa^\text{es}_\nu=\frac{8\pi}{3}\frac{r_\text e^2}{\mu_em_\text p}\simeq0.35\text{ cm}^2\text{/g}κνes​=38π​μe​mp​re2​​≃0.35 cm2/g
ενff∝nenion∣v∣\varepsilon_\nu^\text{ff}\propto \frac{n_\text{e}n_\text{ion}}{|v|}ενff​∝∣v∣ne​nion​​
ενff∝ρ2T−1/2\varepsilon_\nu^\text{ff}\propto \rho^2T^{-1/2}ενff​∝ρ2T−1/2
κνff=ανρ=ενffρBν(T)\kappa_\nu^\text{ff}=\frac{\alpha_\nu}{\rho}=\frac{\varepsilon_\nu^\text{ff}}{\rho B_\nu(T)}κνff​=ραν​​=ρBν​(T)ενff​​
Bν(T)=ενffανB_\nu(T)=\frac{\varepsilon_\nu^\text{ff}}{\alpha_\nu}Bν​(T)=αν​ενff​​
κνff∝ρ−1ενffν−3∝ρT−1/2ν−3\kappa_\nu^\text{ff}\propto\rho^{-1}{\varepsilon^{\text{ff}}_\nu}\nu^{-3}\propto\rho T^{-1/2}\nu^{-3}κνff​∝ρ−1ενff​ν−3∝ρT−1/2ν−3
κff=∫∂Bν(T)∂Tdν∫1κν∂Bν(T)∂Tdν∝ρT−7/2\kappa^\text{ff}=\frac{\int\frac{\partial B_\nu(T)}{\partial T}\text d\nu}{\int\frac{1}{\kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}\text d\nu}\propto\rho T^{-7/2}κff=∫κν​1​∂T∂Bν​(T)​dν∫∂T∂Bν​(T)​dν​∝ρT−7/2
κff=4×1022(ρg⋅cm3)(TK)−7/2 cm2/g\kappa^\text{ff}=4\times10^{22}\left(\frac{\rho}{\text{g}\cdot\text{cm}^3}\right)\left(\frac{T}{\text K}\right)^{-7/2}\text{ cm}^2\text{/g}κff=4×1022(g⋅cm3ρ​)(KT​)−7/2 cm2/g
κνbf≃103Zκνbf\kappa^\text{bf}_{\nu}\simeq10^3Z\kappa^\text{bf}_{\nu}κνbf​≃103Zκνbf​
L∝T4κ⇒δLL=4δTT−δκκL\propto\frac{T^4}{\kappa}\Rightarrow\frac{\delta L}{L}=4\frac{\delta T}{T}-\frac{\delta \kappa}{\kappa}L∝κT4​⇒LδL​=4TδT​−κδκ​
κρ≡∂ln⁡κ∂ln⁡ρ∣T,κT≡∂ln⁡κ∂ln⁡T∣ρ\kappa_\rho\equiv\frac{\partial\ln\kappa}{\partial\ln \rho}\Bigg|_T,\quad \kappa_T\equiv\frac{\partial\ln\kappa}{\partial\ln T}\Bigg|_\rhoκρ​≡∂lnρ∂lnκ​​T​,κT​≡∂lnT∂lnκ​​ρ​
δLL=(4−κT)δTT−κρδρρ\frac{\delta L}{L}=\left(4-\kappa_T\right)\frac{\delta T}{T}-\kappa_\rho\frac{\delta \rho}{\rho}LδL​=(4−κT​)TδT​−κρ​ρδρ​
P∝ρT∝ρ5/3⇒T∝ρ2/3⇒δTT=23δρρP\propto\rho T\propto\rho^{5/3}\Rightarrow T\propto\rho^{2/3}\Rightarrow\frac{\delta T}T=\frac23\frac{\delta \rho}{\rho}P∝ρT∝ρ5/3⇒T∝ρ2/3⇒TδT​=32​ρδρ​
δLL=(4−κT−32κρ)δTT\frac{\delta L}{L}=\left(4-\kappa_T-\frac32\kappa_\rho\right)\frac{\delta T}{T}LδL​=(4−κT​−23​κρ​)TδT​
⇒δLL=4δTT\Rightarrow\frac{\delta L}{L}=4\frac{\delta T}{T}⇒LδL​=4TδT​
⇒δLL=6δTT\Rightarrow\frac{\delta L}{L}=6\frac{\delta T}{T}⇒LδL​=6TδT​
⇒δLL=−234δTT\Rightarrow\frac{\delta L}{L}=-\frac{23}4\frac{\delta T}{T}⇒LδL​=−423​TδT​
Chapter 5