Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Measure the universe
  • From Kepler to Newton
  • Various astrophysical objects
  • Two-body problem
  1. 天体物理动力学

Week1

Measure the universe

From Kepler to Newton

Kepler III

P2∝a3P^2\propto a^3P2∝a3

where $a$ is the semi-major axis

Acceleration of circular motion

f=v2rf=\frac{v^2}{r}f=rv2​

By assuming circular orbits of planets, we have

f=v2r−1∝rP2∝rr3=r−2f= v^2r^{-1}\propto \frac{r}{P^2}\propto\frac{r}{r^3}=r^{-2}f=v2r−1∝P2r​∝r3r​=r−2

which is consistent with Newton II

F=Gm1m2r2F=\frac{Gm_1m_2}{r^2}F=r2Gm1​m2​​

Various astrophysical objects

Using the tool

v2r=GMr2⇒M=v2rG\frac{v^2}{r}=\frac{GM}{r^2}\Rightarrow M=\frac{v^2r}{G}rv2​=r2GM​⇒M=Gv2r​

we can measure

The sun

For the first time we are able to measure the solar mass

P=2πa3GM⊙⇒M⊙=4π2a3GP2=4π2×(1.5×108 km)3G×(1 yr)2=2×1033 gP=2\pi\sqrt{\frac{a^3}{GM_{\odot}}}\Rightarrow M_{\odot}=\frac{4\pi^2a^3}{GP^2}=\frac{4\pi^2\times(1.5\times10^8\text{ km})^3}{G\times(1\text{ yr})^2}=2\times10^{33}\text{ g}P=2πGM⊙​a3​​⇒M⊙​=GP24π2a3​=G×(1 yr)24π2×(1.5×108 km)3​=2×1033 g

Star cluster

R∼1 pc, σ∼20 km/s⇒M∼105M⊙, ρ∼105 M⊙/pc−3R\sim1\text{ pc},\ \sigma\sim 20\text{ km/s}\Rightarrow M\sim10^5M_{\odot},\ \rho\sim10^5\ M_{\odot}\text{/pc}^{-3}R∼1 pc, σ∼20 km/s⇒M∼105M⊙​, ρ∼105 M⊙​/pc−3

Dynamic mass $\sim$ Visible mass

Galaxy

R∼10 kpc, σ∼200 km/s⇒M∼1011M⊙, ρ∼10−1 M⊙/pc−3R\sim10\text{ kpc},\ \sigma\sim 200\text{ km/s}\Rightarrow M\sim10^{11}M_{\odot},\ \rho\sim10^{-1}\ M_{\odot}\text{/pc}^{-3}R∼10 kpc, σ∼200 km/s⇒M∼1011M⊙​, ρ∼10−1 M⊙​/pc−3

Discovery of dark matter - Dynamic mass $>$ Visible mass

SMBH (Sgr A*)

R∼0.01 pc, σ∼500 km/s⇒M∼2×106M⊙, ρ∼2×1012 M⊙/pc−3R\sim0.01\text{ pc},\ \sigma\sim 500\text{ km/s}\Rightarrow M\sim2\times10^{6}M_{\odot},\ \rho\sim2\times10^{12}\ M_{\odot}\text{/pc}^{-3}R∼0.01 pc, σ∼500 km/s⇒M∼2×106M⊙​, ρ∼2×1012 M⊙​/pc−3

In such high mass density, the average distance between two stars (solar mass) is

D∼121/3×10−4 pc∼20 AUD\sim\frac{1}{2^{1/3}}\times10^{-4}\text{ pc}\sim20\text{ AU}D∼21/31​×10−4 pc∼20 AU

Cosmology

Typical acceleration

Estimation using hubble timescale and speed of light

a∼v2r∼c210 Gyr⋅c∼10−7cm/s/yra\sim\frac{v^2}{r}\sim\frac{c^2}{10\text{ Gyr}\cdot c}\sim10^{-7}\text{cm/s/yr}a∼rv2​∼10 Gyr⋅cc2​∼10−7cm/s/yr

Two-body problem

Assuming two point mass $m_1$ and $m_2$ rotating around the common CoM

m1r⃗¨1=Gm1m2∣r⃗2−r⃗1∣3(r⃗2−r⃗1)m2r⃗¨2=−Gm1m2∣r⃗2−r⃗1∣3(r⃗2−r⃗1)m_1\ddot{\vec{r}}_1=\frac{Gm_1m_2}{|\vec r_2-\vec r_1|^3}\left(\vec r_2-\vec r_1\right)\\ m_2\ddot{\vec{r}}_2=-\frac{Gm_1m_2}{|\vec r_2-\vec r_1|^3}\left(\vec r_2-\vec r_1\right)m1​r¨1​=∣r2​−r1​∣3Gm1​m2​​(r2​−r1​)m2​r¨2​=−∣r2​−r1​∣3Gm1​m2​​(r2​−r1​)

Let $\vec r=\vec r_2-\vec r_1$, we have

m1r⃗¨1=Gm1m2r3r⃗,m2r⃗¨2=−Gm1m2r3r⃗m_1\ddot{\vec{r}}_1=\frac{Gm_1m_2}{r^3}\vec r,\quad m_2\ddot{\vec{r}}_2=-\frac{Gm_1m_2}{r^3}\vec rm1​r¨1​=r3Gm1​m2​​r,m2​r¨2​=−r3Gm1​m2​​r

Trajectory

In an effective one-body problem, we consider only the evolution of $\vec r$

r⃗¨=−G(m1+m2)r3r⃗≡−Gmr3r⃗\ddot{\vec r}=-\frac{G(m_1+m_2)}{r^3}\vec r\equiv-\frac{Gm}{r^3}\vec rr¨=−r3G(m1​+m2​)​r≡−r3Gm​r
  • Test mass moves around $m_1+m_2$

Energy

E=12m1r⃗˙12+12m2r⃗˙22−Gm1m2r=12[m1(m2m1+m2)2+m2(m1m1+m2)2]r⃗˙2−Gm1m2r=12m1m2m1+m2r⃗˙2−Gm1m2r=m1m2m1+m2[12r⃗˙2−G(m1+m2)r]\begin{align*} E&=\frac{1}{2}m_1\dot{\vec r}_1^2+\frac{1}{2}m_2\dot{\vec r}_2^2-\frac{Gm_1m_2}{r}\\ &=\frac{1}{2}\left[m_1\left(\frac{m_2}{m_1+m_2}\right)^2+m_2\left(\frac{m_1}{m_1+m_2}\right)^2\right]\dot{\vec r}^2-\frac{Gm_1m_2}{r}\\ &=\frac{1}{2}\frac{m_1m_2}{m_1+m_2}\dot{\vec r}^2-\frac{Gm_1m_2}{r}\\ &=\frac{m_1m_2}{m_1+m_2}\left[\frac{1}{2}\dot{\vec r}^2-\frac{G(m_1+m_2)}{r}\right] \end{align*}E​=21​m1​r˙12​+21​m2​r˙22​−rGm1​m2​​=21​[m1​(m1​+m2​m2​​)2+m2​(m1​+m2​m1​​)2]r˙2−rGm1​m2​​=21​m1​+m2​m1​m2​​r˙2−rGm1​m2​​=m1​+m2​m1​m2​​[21​r˙2−rG(m1​+m2​)​]​

where

μ=m1m2m1+m2\mu=\frac{m_1m_2}{m_1+m_2}μ=m1​+m2​m1​m2​​

is the reduced mass, and

12r⃗˙2−G(m1+m2)r\frac{1}{2}\dot{\vec r}^2-\frac{G(m_1+m_2)}{r}21​r˙2−rG(m1​+m2​)​

is known as the specific energy in the effective one-body system

Angular momentum

J⃗=m1r⃗1×r⃗˙1+m2r⃗2×r⃗˙2=[m1(m2m1+m2)2+m2(m1m1+m2)2]r⃗×r⃗˙=μr⃗×r⃗˙\begin{align*} \vec J&=m_1\vec r_1\times\dot{\vec r}_1+m_2\vec r_2\times\dot{\vec r}_2\\ &=\left[m_1\left(\frac{m_2}{m_1+m_2}\right)^2+m_2\left(\frac{m_1}{m_1+m_2}\right)^2\right]\vec r\times\dot{\vec r}\\ &=\mu\vec r\times\dot{\vec r} \end{align*}J​=m1​r1​×r˙1​+m2​r2​×r˙2​=[m1​(m1​+m2​m2​​)2+m2​(m1​+m2​m1​​)2]r×r˙=μr×r˙​

where

r⃗×r⃗˙\vec r\times\dot{\vec r}r×r˙

is the specific angular momentum

PreviousWeek2Next天体物理吸积过程

Last updated 4 years ago