Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Dynamical Instability
  • Buoyancy and Oscillation
  • Stable Criteria
  • Convectively Unstable
  • Solar Model
  1. 恒星结构与演化

Chapter 6. Convection

In a star with hydrostatic equilibrium achieved, we have several profiles

ρ(r), P(r), T(r), s(r), ⋯\rho(r),\ P(r),\ T(r),\ s(r),\ \cdotsρ(r), P(r), T(r), s(r), ⋯

Dynamical Instability

Now imagine a small bubble, a fluid element $\text e$ located at $r$, moves up by $\Delta r$ keeping its entropy (adiabatic perturbation). Through this displacement, the density of the element changes to

ρe(r+Δr)=ρ(Pe(r+Δr),se(r+Δr))=ρ(P(r+Δr),s(r))ρ(r+Δr)=ρ(P(r+Δr),s(r+Δr))}⇒Dρ∣r+Δr≡ρe(r+Δr)−ρ(r+Δr)=−(∂ρ∂s)PdsdrΔr\left.\begin{align*} \rho_\text e(r+\Delta r)&=\rho(P_\text e(r+\Delta r),s_\text e(r+\Delta r))\\ &=\rho(P(r+\Delta r),s(r))\\ \rho(r+\Delta r)&=\rho(P(r+\Delta r),s(r+\Delta r)) \end{align*}\right\}\Rightarrow \text D\rho\big|_{r+\Delta r}\equiv\rho_\text e(r+\Delta r)-\rho(r+\Delta r)=-\left(\frac{\partial\rho}{\partial s}\right)_P\frac{\text ds}{\text dr}\Delta rρe​(r+Δr)ρ(r+Δr)​=ρ(Pe​(r+Δr),se​(r+Δr))=ρ(P(r+Δr),s(r))=ρ(P(r+Δr),s(r+Δr))​⎭⎬⎫​⇒Dρ​r+Δr​≡ρe​(r+Δr)−ρ(r+Δr)=−(∂s∂ρ​)P​drds​Δr

Here we consider the density as a function of pressure and specific entropy, because pressure equilibrium is achieved super quickly (within hours).

Since

(∂ρ∂s)P=(∂ρ∂T)P(∂T∂s)P=TcP(∂ρ∂T)P=TcPρT(∂ln⁡ρ∂ln⁡T)P=ρcP(∂ln⁡ρ∂ln⁡T)P≡−ρcPδ\begin{align*} \left(\frac{\partial\rho}{\partial s}\right)_P&=\left(\frac{\partial\rho}{\partial T}\right)_P\left(\frac{\partial T}{\partial s}\right)_P=\frac{T}{c_P}\left(\frac{\partial\rho}{\partial T}\right)_P\\ &=\frac{T}{c_P}\frac{\rho}{T}\left(\frac{\partial\ln\rho}{\partial \ln T}\right)_P=\frac{\rho}{c_P}\left(\frac{\partial\ln\rho}{\partial \ln T}\right)_P\\ &\equiv -\frac{\rho}{c_P}\delta \end{align*}(∂s∂ρ​)P​​=(∂T∂ρ​)P​(∂s∂T​)P​=cP​T​(∂T∂ρ​)P​=cP​T​Tρ​(∂lnT∂lnρ​)P​=cP​ρ​(∂lnT∂lnρ​)P​≡−cP​ρ​δ​

where $\delta$ is defined as

δ≡−(∂ln⁡ρ∂ln⁡T)P\delta\equiv -\left(\frac{\partial\ln\rho}{\partial \ln T}\right)_Pδ≡−(∂lnT∂lnρ​)P​

Normally $\delta\sim1$ (ideal gas).

⇒Dρ∣r+Δr=ρδcPdsdrΔr\Rightarrow \text D\rho\big|_{r+\Delta r}=\frac{\rho\delta}{c_P}\frac{\text ds}{\text dr}\Delta r⇒Dρ​r+Δr​=cP​ρδ​drds​Δr

If the element is heavier than the background, that is, has higher density, the element must move back, so the system is stable. In other words, in a stable system,

⇒Dρ∣r+Δr>0\Rightarrow \text D\rho\big|_{r+\Delta r}>0⇒Dρ​r+Δr​>0
  ⟺  dsdr>0\iff \frac{\text ds}{\text dr}>0⟺drds​>0

When ${\text ds}/{\text dr}<0$, the convection starts. This is thus the criterion for the onset of convection. However, it is not easy to measure (or even intuitionally understand) the entropy. We would really like to rewrite ${\text ds}/{\text dr}<0$ to conditions of ${\text dT}/{\text dr}$.

ds(T,P)dr>0\frac{\text ds(T,P)}{\text dr}>0drds(T,P)​>0
  ⟺  (∂s∂T)PdTdr+(∂s∂P)TdPdr>0\iff \left(\frac{\partial s}{\partial T}\right)_P\frac{\text dT}{\text dr}+\left(\frac{\partial s}{\partial P}\right)_T\frac{\text dP}{\text dr}>0⟺(∂T∂s​)P​drdT​+(∂P∂s​)T​drdP​>0
  ⟺  cPTdTdr−[∂(1/ρ)∂T]PdPdr>0\iff \frac{c_P}{T}\frac{\text dT}{\text dr}-\left[\frac{\partial (1/\rho)}{\partial T}\right]_P\frac{\text dP}{\text dr}>0⟺TcP​​drdT​−[∂T∂(1/ρ)​]P​drdP​>0

where we have applied one of the Maxwell's relations

(∂S∂P)T=−(∂V∂T)P\left(\frac{\partial S}{\partial P}\right)_T=-\left(\frac{\partial V}{\partial T}\right)_P(∂P∂S​)T​=−(∂T∂V​)P​

to the second term. Thus the criterion can be further rewritten as

dTdr>TcP[∂(1/ρ)∂T]PdPdr=δρcPdPdr=−gδcP\begin{align*} \frac{\text dT}{\text dr}&>\frac{T}{c_P}\left[\frac{\partial (1/\rho)}{\partial T}\right]_P\frac{\text dP}{\text dr}\\ &=\frac{\delta}{\rho c_P}\frac{\text dP}{\text dr}\\ &=-\frac{g\delta}{c_P} \end{align*}drdT​​>cP​T​[∂T∂(1/ρ)​]P​drdP​=ρcP​δ​drdP​=−cP​gδ​​

In the last equation we have applied the hydrostatic equilibrium,

1ρdPdr=−GMr2≡−g\frac1\rho\frac{\text dP}{\text dr}=-\frac{GM}{r^2}\equiv -gρ1​drdP​=−r2GM​≡−g

$\delta$, $g$ and $c_P$ are all positive, so as long as the temperature gradient is not too negative, the star is free of convection.

Buoyancy and Oscillation

The buoyancy is given by

fb=−g⋅Dρ=−ρgδcPdsdrΔrf_\text b=-g\cdot\text D\rho=-\frac{\rho g\delta}{c_P}\frac{\text ds}{\text dr}\Delta rfb​=−g⋅Dρ=−cP​ρgδ​drds​Δr

Thus the EoM is

ρΔr¨+ρgδcPdsdrΔr=0⇒ω2=gδcPdsdr\rho\Delta \ddot r+\frac{\rho g\delta}{c_P}\frac{\text ds}{\text dr}\Delta r=0\Rightarrow \omega^2=\frac{g\delta}{c_P}\frac{\text ds}{\text dr}ρΔr¨+cP​ρgδ​drds​Δr=0⇒ω2=cP​gδ​drds​

For $\text ds/\text dr>0$, $\omega$ is a real number, and the fluid element thus oscillates at a frequency of $\omega$. For $\text ds/\text dr>0$ however,

ω=±iσ\omega=\pm i\sigmaω=±iσ

where $\sigma$ is real, and

Δr∝e±σt\Delta r\propto e^{\pm\sigma t}Δr∝e±σt

By replacing $s$ with $s(\rho,P)$, we have

ω2=gδcP[(∂s∂ρ)Pdρdr+(∂s∂P)ρdPdr]\begin{align*} \omega^2&=\frac{g\delta}{c_P}\left[\left(\frac{\partial s}{\partial \rho}\right)_P\frac{\text d\rho}{\text dr}+\left(\frac{\partial s}{\partial P}\right)_\rho\frac{\text dP}{\text dr}\right]\\ \end{align*}ω2​=cP​gδ​[(∂ρ∂s​)P​drdρ​+(∂P∂s​)ρ​drdP​]​

Since

(∂ρ∂s)P≡−ρcPδ\left(\frac{\partial\rho}{\partial s}\right)_P\equiv-\frac{\rho}{c_P}\delta(∂s∂ρ​)P​≡−cP​ρ​δ

while

(∂P∂s)ρ(∂s∂ρ)P(∂ρ∂P)s=−1⇒(∂P∂s)ρ=−(∂ρ∂s)P(∂P∂ρ)s=cs2ρcPδ\left(\frac{\partial P}{\partial s}\right)_\rho\left(\frac{\partial s}{\partial \rho}\right)_P\left(\frac{\partial \rho}{\partial P}\right)_s=-1\Rightarrow \left(\frac{\partial P}{\partial s}\right)_\rho=-\left(\frac{\partial\rho}{\partial s}\right)_P\left(\frac{\partial P}{\partial \rho}\right)_s=c_s^2\frac{\rho}{c_P}\delta(∂s∂P​)ρ​(∂ρ∂s​)P​(∂P∂ρ​)s​=−1⇒(∂s∂P​)ρ​=−(∂s∂ρ​)P​(∂ρ∂P​)s​=cs2​cP​ρ​δ

where $c_s$ is the adiabatic sound speed. The the frequency is given by

ω2=gρ(1cs2dPdr−dρdr)=−gρdPdr(dρdP−1cs2)=g2(dρdP−1cs2)\begin{align*} \omega^2&=\frac g\rho\left(\frac1{c_s^2}\frac{\text dP}{\text dr}-\frac{\text d\rho}{\text dr}\right)\\ &=-\frac g\rho\frac{\text dP}{\text dr}\left(\frac{\text d\rho}{\text dP}-\frac1{c_s^2}\right)\\ &=g^2\left(\frac{\text d\rho}{\text dP}-\frac1{c_s^2}\right) \end{align*}ω2​=ρg​(cs2​1​drdP​−drdρ​)=−ρg​drdP​(dPdρ​−cs2​1​)=g2(dPdρ​−cs2​1​)​

Stable Criteria

First of all, we have

dTdr>δρcPdPdr\frac{\text dT}{\text dr}>\frac{\delta}{\rho c_P}\frac{\text dP}{\text dr}drdT​>ρcP​δ​drdP​

Since $\text dP/\text dr<0$, this inequality is the same as

dTdP<δρcP  ⟺  dln⁡Tdln⁡P<δρcPPT\frac{\text dT}{\text dP}<\frac{\delta}{\rho c_P} \iff \frac{\text d\ln T}{\text d\ln P}<\frac{\delta}{\rho c_P}\frac PTdPdT​<ρcP​δ​⟺dlnPdlnT​<ρcP​δ​TP​

We define the actual temperature gradient

∇≡dln⁡Tdln⁡P\nabla\equiv \frac{\text d\ln T}{\text d\ln P}∇≡dlnPdlnT​

and the adiabatic temperature gradient

∇ad≡(∂ln⁡T∂ln⁡P)s=PT(∂T∂P)s=PT(∂(1/ρ)∂s)P(Maxwell’s relation)=−PT⋅1ρ(∂ln⁡ρ∂ln⁡T)P⋅1T(∂T∂s)P=δρcPPT\begin{align*} \nabla_\text{ad}&\equiv\left(\frac{\partial\ln T}{\partial\ln P}\right)_s=\frac PT\left(\frac{\partial T}{\partial P}\right)_s\\ &=\frac PT\left(\frac{\partial (1/\rho)}{\partial s}\right)_P\quad (\text{Maxwell's relation})\\ &=-\frac PT\cdot\frac1\rho\left(\frac{\partial \ln\rho}{\partial \ln T}\right)_P\cdot\frac1T\left(\frac{\partial T}{\partial s}\right)_P\\ &=\frac{\delta}{\rho c_P}\frac PT \end{align*}∇ad​​≡(∂lnP∂lnT​)s​=TP​(∂P∂T​)s​=TP​(∂s∂(1/ρ)​)P​(Maxwell’s relation)=−TP​⋅ρ1​(∂lnT∂lnρ​)P​⋅T1​(∂s∂T​)P​=ρcP​δ​TP​​

In this way, the criterion of stability is

∇<∇ad\nabla<\nabla_\text{ad}∇<∇ad​
  • $\nabla$ is the temperature gradient of the background matter, which is determined by solving the basic equations.

    If the energy is transported via radiation, which is true in most regions inside a stable star, $\nabla$ is then determined by photon diffusion.

    ∇=(dln⁡Tdln⁡P)rad≡∇rad=316πacGκLPmT4\begin{align*} \nabla&=\left(\frac{\text d\ln T}{\text d\ln P}\right)_\text{rad}\equiv \nabla_\text{rad}\\ &=\frac{3}{16\pi ac G}\frac{\kappa LP}{mT^4} \end{align*}∇​=(dlnPdlnT​)rad​≡∇rad​=16πacG3​mT4κLP​​
  • $\nabla_\text{ad}$ is the temperature gradient when the gas is kept adiabatic. It is determined solely by the EoS.

    So far in our discussion, $\nabla\text e=\nabla\text{ad}$. So currently, the full version of the stable criterion is

    ∇rad≃∇<∇e≃∇ad\nabla_\text{rad}\simeq\nabla<\nabla_\text{e}\simeq\nabla_\text{ad}∇rad​≃∇<∇e​≃∇ad​

    Schiwarzchild criterion

    ∇rad<∇ad\nabla_\text{rad}<\nabla_\text{ad}∇rad​<∇ad​
  • In general, the mean molecular weight also has a gradient

    ∇μ≡dln⁡μdln⁡P\nabla_\mu\equiv\frac{\text d\ln\mu}{\text d\ln P}∇μ​≡dlnPdlnμ​

    Now that

    dρρ=αdPP−δdTT+φdμμ(α, δ, φ>0)\frac{\text d\rho}{\rho}=\alpha\frac{\text dP}P-\delta\frac{\text dT}T+\varphi\frac{\text d\mu}\mu\quad (\alpha,\ \delta,\ \varphi>0)ρdρ​=αPdP​−δTdT​+φμdμ​(α, δ, φ>0)

    The stable criterion should be modified

    ∇<∇e+φδ∇μ\nabla<\nabla_\text e+\frac{\varphi}{\delta}\nabla_\mu∇<∇e​+δφ​∇μ​

    Since $\mu$ usually increase when approching the stellar center, $\nabla_\mu>0$. The gradient in mean molecular weight tends to stabilize the star. It is even possible when

    ∇e<∇<∇e+φδ∇μ\nabla_\text e<\nabla<\nabla_\text e+\frac{\varphi}{\delta}\nabla_\mu∇e​<∇<∇e​+δφ​∇μ​

    If this so-called Ledoux criterion is satisfied, the certain region is under semi-convection.

Convectively Unstable

  1. $\nabla>\nabla_\text e$, which is the original condition

  2. $\nabla_\text{rad}>\nabla$

    After the onset of convection, the actual temperature gradient is not determined by the radiation, as the convection takes energy away somehow.

  3. Still we have $\nabla\text{e}\simeq\nabla\text{ad}$ according to our assumption

∇rad>∇>∇e≃∇ad\nabla_\text{rad}>\nabla>\nabla_\text{e}\simeq\nabla_\text{ad}∇rad​>∇>∇e​≃∇ad​

In the outermost layer, where the energy is effciently radiated away due to the low density, the fluid element cannot be treated as adiabatic any longer. In fact,

∇e≳∇ad\nabla_\text{e}\gtrsim\nabla_\text{ad}∇e​≳∇ad​

So in this so-called super adiabatic layer,

∇rad>∇>∇e>∇ad\nabla_\text{rad}>\nabla>\nabla_\text{e}>\nabla_\text{ad}∇rad​>∇>∇e​>∇ad​

Solar Model

  • Why does $\nabla_\text{rad}$ behave like this as $T$ decreases?

    ∇rad=316πacGPT4⋅Lm⋅κ\nabla_\text{rad}=\frac{3}{16\pi ac G}\frac{P}{T^4}\cdot\frac{L}{m}\cdot\kappa∇rad​=16πacG3​T4P​⋅mL​⋅κ
    • $L/m$ is of the same order as $\varepsilon_\text{nuc}$, which has high dependency on temperature.

      As a result, in the core region, $\nabla_\text{rad}$ decreases as the temperature falls.

      Note that in more massive stars when CNO cycle dominates the core, $\varepsilon\text{nuc}$ is much higher than that when p-p chain mechanism dominates, with much stronger dependency on $T$. In this way, $\nabla\text{rad}>\nabla_\text{ad}$ can be achieved throughout the core. Thus convection in the core is possible.

  • In general,

    • when $T\lesssim 10^4$ K, the photo-dissociation of $\ce{H^-}$ leads $\kappa$ to fall drastically as $T$ goes down;

    • when $T\gtrsim 10^4$ K, the free-free transition dominates the $\kappa$, which promotes $\kappa$ in a cooler region.

  • Why is $\nabla_\text{ad}$ slightly lower than $2/5$ around $10^{4-5}$ K?

    At this temperature ($T\sim 1-10$ eV), $\ce{He}^{2+}, \ce{He}^{+}, \ce{H}^{+}$ start to recombine. The recombination changes 'adiabaticity' due to the release of chemical energy.

  • Why does $\nabla$ look like this?

    • In the innermost region with the highest temperature, $\nabla\text{rad}<\nabla\text{ad}$ - stable!

    • As the temeperature goes down, $\nabla\text{rad}$ exceeds $\nabla\text{ad}$ and the convection starts. Note that convection tends to sweep up the gradient difference so that $\nabla\simeq\nabla\text{ad}$ is quickly achieved within sound-cross time $t\text{sc}\lesssim 1$ hr.

    • In the outermost layer, $\nabla\neq\nabla_\text{ad}$, and $\nabla$ is again dominated by radiation.

    • Finally, the sun can be divided into three regions of different stabilities.

PreviousChapter 2. Hydrostatic EquilibriumNextChapter 9. Nuclear Reactions

Last updated 4 years ago

This frequency is called , which is the frequency of the gravity wave inside a star.

We will revisit $\varepsilon_\text{nuc}$ in .

The $\kappa-T$ relation has already been shown in , and will be discussed in detail in .

Brunt–Väisälä frequency (or buoyancy frequency)
Chapter 9
Chapter 5
Chapter 8
z