Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Radiation
  • Radiation Energy
  • Rosseland mean opacity
  • Convection
  • Conduction
  1. 恒星结构与演化

Chapter 5. Energy Transport

How is energy generated in the core transported to the surface?

  • Radiation: photons

  • Convection: fluid motions

  • Conduction: electrons, atoms

Radiation

The sun ($\bar\rho\odot\sim 1.4\text{ g/cm}^3, \bar n\odot\sim10^{24}\text{ cm}^{-3}$) is optically thick, that is, when we solely consider Thomson scattering (photons v.s. electrons), the mean free path for a photon is

lmfp, photons≃1nσT∼1 cm≪R⊙∼7×1010 cml_\text{mfp, photons}\simeq\frac{1}{n\sigma_\text{T}}\sim 1\text{ cm}\ll R_{\odot}\sim 7\times10^{10}\text{ cm}lmfp, photons​≃nσT​1​∼1 cm≪R⊙​∼7×1010 cm

Therefore, photons must be scattered many times before reaching the surface, and energy is radiated by diffusion.

  • Diffusion

    An example is that particles tend to escape from dense regions to the places with lower number density. The particle flux is approximately proportional to the density gradient

    j⃗=ρu⃗≃−D∇n\vec j=\rho\vec u\simeq-D\nabla nj​=ρu≃−D∇n

    where $D$ is the diffusion coefficient

    D∼13μˉlmfp, where μˉ=kTμmpD\sim\frac13\bar \mu l_\text{mfp},\text{ where } \bar\mu=\sqrt{\frac{kT}{\mu m_\text p}}D∼31​μˉ​lmfp​, where μˉ​=μmp​kT​​

    Larger $l_\text{mfp}$ results in larger diffusion rate.

Radiation Energy

Urad=aTrad4U_\text{rad}=aT_\text{rad}^4Urad​=aTrad4​

where $a$ is the radiation coefficient derived from the Stefan–Boltzmann constant

σSB=ac4\sigma_\text{SB}=\frac{ac}4σSB​=4ac​

In a star, radiation and gas are thermalized due to numerous collisions, thus $T_\text{rad}\simeq T$.

We can similarly write down the radiation energy flux as

Frad=−D∇UradF_\text{rad}=-D\nabla U_\text{rad}Frad​=−D∇Urad​

where

D≃13clmfp=13cnσT≡c3ρκD\simeq\frac{1}{3}cl_\text{mfp}=\frac13\frac{c}{n\sigma_\text{T}}\equiv\frac{c}{3\rho\kappa}D≃31​clmfp​=31​nσT​c​≡3ρκc​

Here we have defined the opacity $\kappa$ as

κ≡σTm\kappa\equiv\frac{\sigma_\text{T}}{m}κ≡mσT​​

For a spherical system (such as a star), the gradient is simply ${\partial}/{\partial r}$, thus

Frad=−4ac3ρκT3∂T∂rF_\text{rad}=-\frac{4ac}{3\rho\kappa}T^3\frac{\partial T}{\partial r}Frad​=−3ρκ4ac​T3∂r∂T​

The luminosity is

L=4πr2Frad=−16acπr2ac3ρκT3∂T∂r=−64acπ2r43κT3∂T∂mL=4\pi r^2 F_\text{rad}=-\frac{16ac\pi r^2ac}{3\rho\kappa}T^3\frac{\partial T}{\partial r}=-\frac{64ac\pi^2 r^4}{3\kappa}T^3\frac{\partial T}{\partial m}L=4πr2Frad​=−3ρκ16acπr2ac​T3∂r∂T​=−3κ64acπ2r4​T3∂m∂T​

But how can we know the opacity?

Rosseland mean opacity

In general, there are so many sources of opacity $\kappa_\nu(\rho,T)$ like scattering and absorption.

  • Electron scattering

    κ=κe=0.35 cm2/g\kappa=\kappa_e=0.35\text{ cm}^2\text{/g}κ=κe​=0.35 cm2/g
  • Free-free transition (bremsstrahlung)

    kνff∼f(ν)ρT−7/2k_\nu^\text{ff}\sim f(\nu)\rho T^{-7/2}kνff​∼f(ν)ρT−7/2

    From Fengwei Xu's notes

For each $\nu$, the radiation flux is

Fν=−c3ρκν∂∂rUrad,νF_\nu=-\frac{c}{3\rho \kappa_\nu}\frac{\partial}{\partial r}U_{\text{rad},\nu}Fν​=−3ρκν​c​∂r∂​Urad,ν​

where $U\nu$ is given by $4\pi B\nu(T)/c$,

Bν(T)=2hν3c21exp⁡(hν/kT)−1B_\nu(T)=\frac{2h\nu^3}{c^2}\frac{1}{\exp{(h\nu/kT)}-1}Bν​(T)=c22hν3​exp(hν/kT)−11​

Thus

Fν=−4π3ρκν∂Bν(T)∂T∂T∂rF_\nu=-\frac{4\pi}{3\rho \kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}\frac{\partial T}{\partial r}Fν​=−3ρκν​4π​∂T∂Bν​(T)​∂r∂T​

Obviously,

1κν∂Bν(T)∂T\frac1{\kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}κν​1​∂T∂Bν​(T)​

is $\nu$-denpendent, thus we can define the Rosseland mean opacity as

1κR≡∫1κν∂Bν(T)∂Tdν∫∂Bν(T)∂Tdν\frac1{\kappa_R}\equiv\frac{\int\frac{1}{\kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}\text d\nu}{\int\frac{\partial B_\nu(T)}{\partial T}\text d\nu}κR​1​≡∫∂T∂Bν​(T)​dν∫κν​1​∂T∂Bν​(T)​dν​

Note that by integrating $B_\nu(T)$ over the frequency the integrated radiance $L$ is

L=2π515k4T4c2h31π=σSBT41πL=\frac{2 \pi^{5}}{15} \frac{k^{4} T^{4}}{c^{2} h^{3}} \frac{1}{\pi}=\sigma_\text{SB} T^{4} \frac{1}{\pi}L=152π5​c2h3k4T4​π1​=σSB​T4π1​

Thus

∫∂Bν(T)∂Tdν=∂∂T(σSBT4)=acπT3\int\frac{\partial B_\nu(T)}{\partial T}\text d\nu=\frac{\partial}{\partial T}\left(\sigma_\text{SB} T^4\right)=\frac{ac}{\pi}T^3∫∂T∂Bν​(T)​dν=∂T∂​(σSB​T4)=πac​T3

Then

∫1κν∂Bν(T)∂Tdν=1κRacπT3{\int\frac{1}{\kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}\text d\nu}=\frac1{\kappa_R}\frac{ac}{\pi}T^3∫κν​1​∂T∂Bν​(T)​dν=κR​1​πac​T3

In this way,

F=−4ac3ρκRT3∂T∂rF=-\frac{4ac}{3\rho \kappa_R}T^3\frac{\partial T}{\partial r}F=−3ρκR​4ac​T3∂r∂T​

Convection

Discussed in the next chapter.

Conduction

  • Not important for normal stars

  • Important for compact stars

Energy is transported via collision due to thermal motions of particles. Although the physics is different from radiation transport, the flux is simply given by

Fcd=−kcd(T,ρ)∇TF_\text{cd}=-k_\text{cd}(T,\rho)\nabla TFcd​=−kcd​(T,ρ)∇T

So for a star without significant convection, the total energy flux is

Ftot=Frad+Fcd=−(krad+kcd)∇TF_\text{tot}=F_\text{rad}+F_\text{cd}=-\left(k_\text{rad}+k_\text{cd}\right)\nabla TFtot​=Frad​+Fcd​=−(krad​+kcd​)∇T
PreviousChapter 13. Star FormationNext天体光谱学

Last updated 4 years ago

5_1