Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Radiation
  • Radiation Energy
  • Rosseland mean opacity
  • Convection
  • Conduction
  1. 恒星结构与演化

Chapter 5. Energy Transport

PreviousChapter 13. Star FormationNext天体光谱学

Last updated 4 years ago

How is energy generated in the core transported to the surface?

  • Radiation: photons

  • Convection: fluid motions

  • Conduction: electrons, atoms

Radiation

The sun ($\bar\rho\odot\sim 1.4\text{ g/cm}^3, \bar n\odot\sim10^{24}\text{ cm}^{-3}$) is optically thick, that is, when we solely consider Thomson scattering (photons v.s. electrons), the mean free path for a photon is

lmfp, photons≃1nσT∼1 cm≪R⊙∼7×1010 cml_\text{mfp, photons}\simeq\frac{1}{n\sigma_\text{T}}\sim 1\text{ cm}\ll R_{\odot}\sim 7\times10^{10}\text{ cm}lmfp, photons​≃nσT​1​∼1 cm≪R⊙​∼7×1010 cm

Therefore, photons must be scattered many times before reaching the surface, and energy is radiated by diffusion.

  • Diffusion

    An example is that particles tend to escape from dense regions to the places with lower number density. The particle flux is approximately proportional to the density gradient

    j⃗=ρu⃗≃−D∇n\vec j=\rho\vec u\simeq-D\nabla nj​=ρu≃−D∇n

    where $D$ is the diffusion coefficient

    D∼13μˉlmfp, where μˉ=kTμmpD\sim\frac13\bar \mu l_\text{mfp},\text{ where } \bar\mu=\sqrt{\frac{kT}{\mu m_\text p}}D∼31​μˉ​lmfp​, where μˉ​=μmp​kT​​

    Larger $l_\text{mfp}$ results in larger diffusion rate.

Radiation Energy

where $a$ is the radiation coefficient derived from the Stefan–Boltzmann constant

In a star, radiation and gas are thermalized due to numerous collisions, thus $T_\text{rad}\simeq T$.

We can similarly write down the radiation energy flux as

where

Here we have defined the opacity $\kappa$ as

For a spherical system (such as a star), the gradient is simply ${\partial}/{\partial r}$, thus

The luminosity is

But how can we know the opacity?

Rosseland mean opacity

In general, there are so many sources of opacity $\kappa_\nu(\rho,T)$ like scattering and absorption.

  • Electron scattering

  • Free-free transition (bremsstrahlung)

    From Fengwei Xu's notes

For each $\nu$, the radiation flux is

where $U\nu$ is given by $4\pi B\nu(T)/c$,

Thus

Obviously,

is $\nu$-denpendent, thus we can define the Rosseland mean opacity as

Note that by integrating $B_\nu(T)$ over the frequency the integrated radiance $L$ is

Thus

Then

In this way,

Convection

Discussed in the next chapter.

Conduction

  • Not important for normal stars

  • Important for compact stars

Energy is transported via collision due to thermal motions of particles. Although the physics is different from radiation transport, the flux is simply given by

So for a star without significant convection, the total energy flux is

Urad=aTrad4U_\text{rad}=aT_\text{rad}^4Urad​=aTrad4​
σSB=ac4\sigma_\text{SB}=\frac{ac}4σSB​=4ac​
Frad=−D∇UradF_\text{rad}=-D\nabla U_\text{rad}Frad​=−D∇Urad​
D≃13clmfp=13cnσT≡c3ρκD\simeq\frac{1}{3}cl_\text{mfp}=\frac13\frac{c}{n\sigma_\text{T}}\equiv\frac{c}{3\rho\kappa}D≃31​clmfp​=31​nσT​c​≡3ρκc​
κ≡σTm\kappa\equiv\frac{\sigma_\text{T}}{m}κ≡mσT​​
Frad=−4ac3ρκT3∂T∂rF_\text{rad}=-\frac{4ac}{3\rho\kappa}T^3\frac{\partial T}{\partial r}Frad​=−3ρκ4ac​T3∂r∂T​
L=4πr2Frad=−16acπr2ac3ρκT3∂T∂r=−64acπ2r43κT3∂T∂mL=4\pi r^2 F_\text{rad}=-\frac{16ac\pi r^2ac}{3\rho\kappa}T^3\frac{\partial T}{\partial r}=-\frac{64ac\pi^2 r^4}{3\kappa}T^3\frac{\partial T}{\partial m}L=4πr2Frad​=−3ρκ16acπr2ac​T3∂r∂T​=−3κ64acπ2r4​T3∂m∂T​
κ=κe=0.35 cm2/g\kappa=\kappa_e=0.35\text{ cm}^2\text{/g}κ=κe​=0.35 cm2/g
kνff∼f(ν)ρT−7/2k_\nu^\text{ff}\sim f(\nu)\rho T^{-7/2}kνff​∼f(ν)ρT−7/2

Fν=−c3ρκν∂∂rUrad,νF_\nu=-\frac{c}{3\rho \kappa_\nu}\frac{\partial}{\partial r}U_{\text{rad},\nu}Fν​=−3ρκν​c​∂r∂​Urad,ν​
Bν(T)=2hν3c21exp⁡(hν/kT)−1B_\nu(T)=\frac{2h\nu^3}{c^2}\frac{1}{\exp{(h\nu/kT)}-1}Bν​(T)=c22hν3​exp(hν/kT)−11​
Fν=−4π3ρκν∂Bν(T)∂T∂T∂rF_\nu=-\frac{4\pi}{3\rho \kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}\frac{\partial T}{\partial r}Fν​=−3ρκν​4π​∂T∂Bν​(T)​∂r∂T​
1κν∂Bν(T)∂T\frac1{\kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}κν​1​∂T∂Bν​(T)​
1κR≡∫1κν∂Bν(T)∂Tdν∫∂Bν(T)∂Tdν\frac1{\kappa_R}\equiv\frac{\int\frac{1}{\kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}\text d\nu}{\int\frac{\partial B_\nu(T)}{\partial T}\text d\nu}κR​1​≡∫∂T∂Bν​(T)​dν∫κν​1​∂T∂Bν​(T)​dν​
L=2π515k4T4c2h31π=σSBT41πL=\frac{2 \pi^{5}}{15} \frac{k^{4} T^{4}}{c^{2} h^{3}} \frac{1}{\pi}=\sigma_\text{SB} T^{4} \frac{1}{\pi}L=152π5​c2h3k4T4​π1​=σSB​T4π1​
∫∂Bν(T)∂Tdν=∂∂T(σSBT4)=acπT3\int\frac{\partial B_\nu(T)}{\partial T}\text d\nu=\frac{\partial}{\partial T}\left(\sigma_\text{SB} T^4\right)=\frac{ac}{\pi}T^3∫∂T∂Bν​(T)​dν=∂T∂​(σSB​T4)=πac​T3
∫1κν∂Bν(T)∂Tdν=1κRacπT3{\int\frac{1}{\kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}\text d\nu}=\frac1{\kappa_R}\frac{ac}{\pi}T^3∫κν​1​∂T∂Bν​(T)​dν=κR​1​πac​T3
F=−4ac3ρκRT3∂T∂rF=-\frac{4ac}{3\rho \kappa_R}T^3\frac{\partial T}{\partial r}F=−3ρκR​4ac​T3∂r∂T​
Fcd=−kcd(T,ρ)∇TF_\text{cd}=-k_\text{cd}(T,\rho)\nabla TFcd​=−kcd​(T,ρ)∇T
Ftot=Frad+Fcd=−(krad+kcd)∇TF_\text{tot}=F_\text{rad}+F_\text{cd}=-\left(k_\text{rad}+k_\text{cd}\right)\nabla TFtot​=Frad​+Fcd​=−(krad​+kcd​)∇T
5_1