Chapter 5. Energy Transport

How is energy generated in the core transported to the surface?

  • Radiation: photons

  • Convection: fluid motions

  • Conduction: electrons, atoms

Radiation

The sun ($\bar\rho\odot\sim 1.4\text{ g/cm}^3, \bar n\odot\sim10^{24}\text{ cm}^{-3}$) is optically thick, that is, when we solely consider Thomson scattering (photons v.s. electrons), the mean free path for a photon is

lmfp, photons1nσT1 cmR7×1010 cml_\text{mfp, photons}\simeq\frac{1}{n\sigma_\text{T}}\sim 1\text{ cm}\ll R_{\odot}\sim 7\times10^{10}\text{ cm}

Therefore, photons must be scattered many times before reaching the surface, and energy is radiated by diffusion.

  • Diffusion

    An example is that particles tend to escape from dense regions to the places with lower number density. The particle flux is approximately proportional to the density gradient

    j=ρuDn\vec j=\rho\vec u\simeq-D\nabla n

    where $D$ is the diffusion coefficient

    D13μˉlmfp, where μˉ=kTμmpD\sim\frac13\bar \mu l_\text{mfp},\text{ where } \bar\mu=\sqrt{\frac{kT}{\mu m_\text p}}

    Larger $l_\text{mfp}$ results in larger diffusion rate.

Radiation Energy

Urad=aTrad4U_\text{rad}=aT_\text{rad}^4

where $a$ is the radiation coefficient derived from the Stefan–Boltzmann constant

σSB=ac4\sigma_\text{SB}=\frac{ac}4

In a star, radiation and gas are thermalized due to numerous collisions, thus $T_\text{rad}\simeq T$.

We can similarly write down the radiation energy flux as

Frad=DUradF_\text{rad}=-D\nabla U_\text{rad}

where

D13clmfp=13cnσTc3ρκD\simeq\frac{1}{3}cl_\text{mfp}=\frac13\frac{c}{n\sigma_\text{T}}\equiv\frac{c}{3\rho\kappa}

Here we have defined the opacity $\kappa$ as

κσTm\kappa\equiv\frac{\sigma_\text{T}}{m}

For a spherical system (such as a star), the gradient is simply ${\partial}/{\partial r}$, thus

Frad=4ac3ρκT3TrF_\text{rad}=-\frac{4ac}{3\rho\kappa}T^3\frac{\partial T}{\partial r}

The luminosity is

L=4πr2Frad=16acπr2ac3ρκT3Tr=64acπ2r43κT3TmL=4\pi r^2 F_\text{rad}=-\frac{16ac\pi r^2ac}{3\rho\kappa}T^3\frac{\partial T}{\partial r}=-\frac{64ac\pi^2 r^4}{3\kappa}T^3\frac{\partial T}{\partial m}

But how can we know the opacity?

Rosseland mean opacity

In general, there are so many sources of opacity $\kappa_\nu(\rho,T)$ like scattering and absorption.

  • Electron scattering

    κ=κe=0.35 cm2/g\kappa=\kappa_e=0.35\text{ cm}^2\text{/g}
  • Free-free transition (bremsstrahlung)

    kνfff(ν)ρT7/2k_\nu^\text{ff}\sim f(\nu)\rho T^{-7/2}

    From Fengwei Xu's notes

For each $\nu$, the radiation flux is

Fν=c3ρκνrUrad,νF_\nu=-\frac{c}{3\rho \kappa_\nu}\frac{\partial}{\partial r}U_{\text{rad},\nu}

where $U\nu$ is given by $4\pi B\nu(T)/c$,

Bν(T)=2hν3c21exp(hν/kT)1B_\nu(T)=\frac{2h\nu^3}{c^2}\frac{1}{\exp{(h\nu/kT)}-1}

Thus

Fν=4π3ρκνBν(T)TTrF_\nu=-\frac{4\pi}{3\rho \kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}\frac{\partial T}{\partial r}

Obviously,

1κνBν(T)T\frac1{\kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}

is $\nu$-denpendent, thus we can define the Rosseland mean opacity as

1κR1κνBν(T)TdνBν(T)Tdν\frac1{\kappa_R}\equiv\frac{\int\frac{1}{\kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}\text d\nu}{\int\frac{\partial B_\nu(T)}{\partial T}\text d\nu}

Note that by integrating $B_\nu(T)$ over the frequency the integrated radiance $L$ is

L=2π515k4T4c2h31π=σSBT41πL=\frac{2 \pi^{5}}{15} \frac{k^{4} T^{4}}{c^{2} h^{3}} \frac{1}{\pi}=\sigma_\text{SB} T^{4} \frac{1}{\pi}

Thus

Bν(T)Tdν=T(σSBT4)=acπT3\int\frac{\partial B_\nu(T)}{\partial T}\text d\nu=\frac{\partial}{\partial T}\left(\sigma_\text{SB} T^4\right)=\frac{ac}{\pi}T^3

Then

1κνBν(T)Tdν=1κRacπT3{\int\frac{1}{\kappa_\nu}\frac{\partial B_\nu(T)}{\partial T}\text d\nu}=\frac1{\kappa_R}\frac{ac}{\pi}T^3

In this way,

F=4ac3ρκRT3TrF=-\frac{4ac}{3\rho \kappa_R}T^3\frac{\partial T}{\partial r}

Convection

Discussed in the next chapter.

Conduction

  • Not important for normal stars

  • Important for compact stars

Energy is transported via collision due to thermal motions of particles. Although the physics is different from radiation transport, the flux is simply given by

Fcd=kcd(T,ρ)TF_\text{cd}=-k_\text{cd}(T,\rho)\nabla T

So for a star without significant convection, the total energy flux is

Ftot=Frad+Fcd=(krad+kcd)TF_\text{tot}=F_\text{rad}+F_\text{cd}=-\left(k_\text{rad}+k_\text{cd}\right)\nabla T

Last updated