Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Determine the trajectory
  • Methods: Lagrangian/Hamilton Dynamics
  • Solve the two-body trajectory
  • Relaxation
  1. 天体物理动力学

Week2

Determine the trajectory

Methods: Lagrangian/Hamilton Dynamics

Lagrangian

L=K−V=L(t,q,q˙)\mathcal{L}=K-V=\mathcal{L}(t,q,\dot{q})L=K−V=L(t,q,q˙​)

where $K$ is the kinetic energy, $V$ is the potential energy, and $q$ corresponds to a set of general coordinates

Euler-Lagrange equation

ddt(∂L∂q˙)−∂L∂q=0\frac{\text{d}}{\text{d}t}\left(\frac{\partial \mathcal{L}}{\partial\dot q}\right)-\frac{\partial \mathcal{L}}{\partial q}=0dtd​(∂q˙​∂L​)−∂q∂L​=0

General momentum

p=∂L∂q˙p=\frac{\partial \mathcal{L}}{\partial\dot q}p=∂q˙​∂L​

Hamiltonian

H=∑piq˙i−L=H(t,q,p)H=\sum p_i\dot q_i-\mathcal{L}=H(t,q,p)H=∑pi​q˙​i​−L=H(t,q,p)

and

dH=−∂L∂tdt−∂L∂q˙dq+q˙dp\text{d}H=-\frac{\partial \mathcal{L}}{\partial t}\text{d} t-\frac{\partial \mathcal{L}}{\partial\dot q}\text{d}q+\dot q\text{d}pdH=−∂t∂L​dt−∂q˙​∂L​dq+q˙​dp

Hamilton's canonical equations

p˙=∂L∂q=−∂H∂qq˙=∂H∂p\dot p=\frac{\partial \mathcal{L}}{\partial q}=-\frac{\partial H}{\partial q}\\ \dot q=\frac{\partial H}{\partial p}p˙​=∂q∂L​=−∂q∂H​q˙​=∂p∂H​

Solve the two-body trajectory

We know that the trajectory is in a plane - two parameters (general coordinates) - $r$ and $\theta$

(Specific) Lagrangian

L=12(r˙2+r2θ˙2)+Gmr\mathcal{L}=\frac12\left(\dot r^2+r^2\dot\theta^2\right)+\frac{Gm}{r}L=21​(r˙2+r2θ˙2)+rGm​

General momenta

pr=r˙,pθ=r2θ˙p_r=\dot r,\quad p_\theta=r^2\dot\thetapr​=r˙,pθ​=r2θ˙

Hamiltonian

H=∑piq˙i−L=12(pr2+pθ2r2)−GmrH=\sum p_i\dot q_i-\mathcal{L}=\frac12\left(p_r^2+\frac{p_\theta^2}{r^2}\right)-\frac{Gm}{r}H=∑pi​q˙​i​−L=21​(pr2​+r2pθ2​​)−rGm​

Here the Hamiltonian is the (conserved) energy $E$ of the system

Hamilton's canonical equations

{r˙=prθ˙=pθr2p˙r=pθ2r3−Gmr2p˙θ=0⇒pθ=L,pr=±2(E+Gmr)−L2r2\left\{\begin{align*} \dot r&=p_r\\ \dot \theta&=\frac{p_\theta}{r^2}\\ \dot{p}_r&=\frac{p_\theta^2}{r^3}-\frac{Gm}{r^2}\\ \dot p_\theta&=0 \end{align*}\right. \Rightarrow p_\theta=L,\quad p_r=\pm\sqrt{2\left(E+\frac{Gm}{r}\right)-\frac{L^2}{r^2}}⎩⎨⎧​r˙θ˙p˙​r​p˙​θ​​=pr​=r2pθ​​=r3pθ2​​−r2Gm​=0​⇒pθ​=L,pr​=±2(E+rGm​)−r2L2​​
⇒drdθ=prpθ/r2=±2(E+Gmr)−L2r2L/r2\Rightarrow\frac{\text{d}r}{\text{d}\theta}=\frac{p_r}{p_\theta/r^2}=\frac{\pm\sqrt{2\left(E+\frac{Gm}{r}\right)-\frac{L^2}{r^2}}}{L/r^2}⇒dθdr​=pθ​/r2pr​​=L/r2±2(E+rGm​)−r2L2​​​

In fact

Lr−GmL=2E+G2m2L2cos⁡(θ+θ0)⇒r=L2/Gm1+1+2EL2G2m2cos⁡θ\frac{L}{r}-\frac{Gm}{L}=\sqrt{2E+\frac{G^2m^2}{L^2}}\cos(\theta+\theta_0)\Rightarrow r=\frac{L^2/Gm}{1+\sqrt{1+\frac{2EL^2}{G^2m^2}}\cos\theta}rL​−LGm​=2E+L2G2m2​​cos(θ+θ0​)⇒r=1+1+G2m22EL2​​cosθL2/Gm​

We let

p=L2Gm,e=1+2EL2G2m2p=\frac{L^2}{Gm},\quad e=\sqrt{1+\frac{2EL^2}{G^2m^2}}p=GmL2​,e=1+G2m22EL2​​
⇒r=p1+ecos⁡θ\Rightarrow r=\frac{p}{1+e\cos\theta}⇒r=1+ecosθp​

Typical Polar equations of conic sections!

  1. $E<0\Rightarrow e<1$ - ellipse

  2. $E=0\Rightarrow e=1$ - parabola

    E=0⇒v22=Gmr⇒v=2GmrE=0\Rightarrow\frac{v^2}{2}=\frac{Gm}{r}\Rightarrow v=\sqrt{\frac{2Gm}{r}}E=0⇒2v2​=rGm​⇒v=r2Gm​​

    For parabola orbits, it is easy for us to calculate the velocity!

    If

    ∣2EL2G2m2∣≪1\left|\frac{2EL^2}{G^2m^2}\right|\ll1​G2m22EL2​​≪1

    the orbit looks quite like a parabola so we can also estimate the velocity in this way

    • Example 1 - stars around a SMBH

      $v=100\text{ km/s}$, $r=1\text{ pc}$, $m=10^8 M_{\odot}$

      ∣2EL2G2m2∣∼10−17\left|\frac{2EL^2}{G^2m^2}\right|\sim10^{-17}​G2m22EL2​​∼10−17

      quite parabolic!

    • Example 2 - two galaxies in a cluster

      $v=500\text{ km/s}$, $r=100\text{ kpc}$, $m=10^{11} M_{\odot}$

      2EL2G2m2∼103\frac{2EL^2}{G^2m^2}\sim10^3G2m22EL2​∼103

      hyperbolic!

  3. $E>0\Rightarrow e>1$ - hyperbola

    Scattering

    The (specific) energy and angular momenta are straightforward

    E=v∞22=vf22,L=v∞bE=\frac{v_\infty^2}{2}=\frac{v_f^2}{2},\quad L=v_\infty bE=2v∞2​​=2vf2​​,L=v∞​b

    And it is easy to tell that throughout the scattering,

    δθ=2θcri−π\delta \theta=2\theta_{cri}-\piδθ=2θcri​−π

    where

    θcri=π−arccos⁡(a/c)=arccos⁡(−1/e)\theta_{cri}=\pi-\arccos(a/c)=\arccos(-1/e)θcri​=π−arccos(a/c)=arccos(−1/e)

    In this way,

    δθ=2arccos⁡(−1/e)−π=2arcsin⁡(1/e),e≫1⇒δθ≪1\delta\theta=2\arccos(-1/e)-\pi=2\arcsin(1/e),\quad e\gg1\Rightarrow\delta\theta\ll1δθ=2arccos(−1/e)−π=2arcsin(1/e),e≫1⇒δθ≪1

    In fact, when $e\gg1$, we have

    δθ∼1/e=(1+2EL2G2m2)−1/2∼G2m22EL2=Gmv∞2b=rinfb\delta\theta\sim1/e=\left(1+\frac{2EL^2}{G^2m^2}\right)^{-1/2}\sim\sqrt{\frac{G^2m^2}{2EL^2}}=\frac{Gm}{{v_\infty^2} b}=\frac{r_{inf}}{b}δθ∼1/e=(1+G2m22EL2​)−1/2∼2EL2G2m2​​=v∞2​bGm​=brinf​​

    $r_{inf}$ is a typical impact parameter with which $\Delta \theta$ becomes significant

    e∼2⇒2EL2G2m2∼1⇒b∼Gmv∞2≡rinfe\sim\sqrt{2}\Rightarrow\frac{2EL^2}{G^2m^2}\sim1\Rightarrow b\sim\frac{Gm}{v^2_\infty}\equiv r_{inf}e∼2​⇒G2m22EL2​∼1⇒b∼v∞2​Gm​≡rinf​

Relaxation

When a star moves in a cluster, the direction of the velocity will change under the impact of all other stars. We would like to estimate the timescale in which the orbit/initial velocity of a star significantly change ($\Delta\theta$ in velocity $\sim1$)

  • When the star moves in the cluster

    ⟨θ⃗f2⟩=⟨(θ⃗0+∑iδθ⃗i)2⟩=⟨θ⃗02⟩+2⟨θ⃗0∑iδθ⃗i⟩+⟨∑i(δθ⃗i)2⟩+⟨∑i≠jδθ⃗iδθ⃗i⟩\left\langle\vec\theta_f^2\right\rangle=\left\langle\left(\vec\theta_0+\sum_{i}\delta\vec\theta_i\right)^2\right\rangle= \left\langle\vec\theta_0^2\right\rangle +2\left\langle\vec\theta_0\sum_{i}\delta\vec\theta_i\right\rangle +\left\langle\sum_{i}\left(\delta\vec\theta_i\right)^2\right\rangle +\left\langle\sum_{i\neq j}\delta\vec\theta_i\delta\vec\theta_i\right\rangle⟨θf2​⟩=⟨(θ0​+i∑​δθi​)2⟩=⟨θ02​⟩+2⟨θ0​i∑​δθi​⟩+⟨i∑​(δθi​)2⟩+⟨i=j∑​δθi​δθi​⟩

    where $\langle\rangle$ stands for taking average

    Obviously, the second and the fourth terms vanish as each $\delta\vec\theta_i$ is random and independent, so we are extremely interested in the third term

    ⟨∑i(δθ⃗i)2⟩=N⟨(δθ⃗)2⟩∼N(rinfb)2∼1\left\langle\sum_{i}\left(\delta\vec\theta_i\right)^2\right\rangle=N\left\langle\left(\delta\vec\theta\right)^2\right\rangle\sim N\left(\frac{r_{inf}}{b}\right)^2\sim1⟨i∑​(δθi​)2⟩=N⟨(δθ)2⟩∼N(brinf​​)2∼1

    where $N$ is the number of stars that have impact on the star we consider

  • A more realistic model

    The number of stars lying within the ring $b\sim b+\text{d}b$ can be estimated with the surface/column density (number within an unit area) $\sigma$

    δN=2πbdb⋅σ∼2πbdb⋅N∗πR∗2\delta N=2\pi b\text{d}b\cdot \sigma\sim2\pi b\text{d}b\cdot\frac{N_*}{\pi R_*^2}δN=2πbdb⋅σ∼2πbdb⋅πR∗2​N∗​​

    where $N*$ is the total star number in the cluster and $R*$ is the cluster's radius

    So every time the star crosses the cluster

    ⟨Δ(θ2)⟩=∫δN⟨(δθ)2⟩∼2πN∗πR∗2∫bminR∗(rinfb)2bdb\begin{align*} \left\langle\Delta\left(\theta^2\right)\right\rangle&=\int\delta N\left\langle(\delta\theta)^2\right\rangle\\ &\sim\frac{2\pi N_*}{\pi R_*^2}\int_{b_{min}}^{R_*}\left(\frac{r_{inf}}{b}\right)^2 b\text{d}b \end{align*}⟨Δ(θ2)⟩​=∫δN⟨(δθ)2⟩∼πR∗2​2πN∗​​∫bmin​R∗​​(brinf​​)2bdb​

    but note that the approximation

    δθ∼rinfb\delta\theta\sim\frac{r_{inf}}{b}δθ∼brinf​​

    is valid only when $b$ is large, say, $b>r_{inf}$, so we have to rewrite the integral

    ⟨Δ(θ2)⟩∼2N∗rinf2R∗2[∫rinfR∗dbb+∫bminrinfφ(b)db]=2N∗rinf2R∗2[ln⁡R∗rinf+∫bminrinfφ(b)db]\begin{align*} \left\langle\Delta\left(\theta^2\right)\right\rangle &\sim\frac{2N_*r_{inf}^2}{R_*^2}\left[\int_{r_{inf}}^{R_*}\frac{\text{d}b}{b}+\int_{b_{min}}^{r_{inf}}\varphi(b){\text{d}b}\right]\\ &=\frac{2N_*r_{inf}^2}{R_*^2}\left[\ln\frac{R_*}{r_{inf}}+\int_{b_{min}}^{r_{inf}}\varphi(b){\text{d}b}\right] \end{align*}⟨Δ(θ2)⟩​∼R∗2​2N∗​rinf2​​[∫rinf​R∗​​bdb​+∫bmin​rinf​​φ(b)db]=R∗2​2N∗​rinf2​​[lnrinf​R∗​​+∫bmin​rinf​​φ(b)db]​

    It's not easy to estimate the second term. For some systems it is negligible, usually when $b{min}$ is large ($\sim R{\odot}$) and is comparable to $r_{inf}$, which is true for stellar clusters. Anyway, we simply drop that term...

    ⟨Δ(θ2)⟩∼2N∗rinf2R∗2ln⁡R∗rinf≡2N∗rinf2R∗2ln⁡Λ\left\langle\Delta\left(\theta^2\right)\right\rangle \sim\frac{2N_*r_{inf}^2}{R_*^2}\ln\frac{R_*}{r_{inf}}\equiv \frac{2N_*r_{inf}^2}{R_*^2}\ln\Lambda⟨Δ(θ2)⟩∼R∗2​2N∗​rinf2​​lnrinf​R∗​​≡R∗2​2N∗​rinf2​​lnΛ

    The typical crossing number for that angle to become significant is

    Ncross=1⟨Δ(θ2)⟩N_{cross}=\frac{1}{\left\langle\Delta\left(\theta^2\right)\right\rangle}Ncross​=⟨Δ(θ2)⟩1​

    And the relaxation timescale

    Trelax=tcrossNcross∼2R∗v⋅R∗22N∗rinf2ln⁡Λ=R∗3N∗vln⁡Λv4G2m2∼R∗3N∗vln⁡ΛG2m2N∗2G2m2R∗2(v2∼GM∗R∗=GmN∗R∗)=N∗ln⁡Λ⋅R∗v=N∗ln⁡N∗⋅R∗v(Λ=R∗rinf=R∗v2Gm∼GmN∗R∗GmR∗=N∗)\begin{align*} T_{relax}&=t_{cross}N_{cross}\sim\frac{2R_*}{v}\cdot \frac{R_*^2}{2N_*r_{inf}^2\ln\Lambda}\\ &=\frac{R_*^3}{N_*v\ln\Lambda}\frac{v^4}{G^2m^2}\\ &\sim\frac{R_*^3}{N_*v\ln\Lambda}\frac{G^2m^2N_*^2}{G^2m^2R_*^2}\quad\left(v^2\sim\frac{GM_*}{R_*}=\frac{GmN_*}{R_*}\right)\\ &=\frac{N_*}{\ln\Lambda}\cdot\frac{R_*}{v}\\ &=\frac{N_*}{\ln N_*}\cdot\frac{R_*}{v} \quad\left(\Lambda=\frac{R_*}{r_{inf}}=\frac{R_*v^2}{Gm}\sim\frac{GmN_*R_*}{GmR_*}=N_*\right) \end{align*}Trelax​​=tcross​Ncross​∼v2R∗​​⋅2N∗​rinf2​lnΛR∗2​​=N∗​vlnΛR∗3​​G2m2v4​∼N∗​vlnΛR∗3​​G2m2R∗2​G2m2N∗2​​(v2∼R∗​GM∗​​=R∗​GmN∗​​)=lnΛN∗​​⋅vR∗​​=lnN∗​N∗​​⋅vR∗​​(Λ=rinf​R∗​​=GmR∗​v2​∼GmR∗​GmN∗​R∗​​=N∗​)​

    $T{relax}\ll T{Hubble}\Rightarrow$ Collisional - the cluster has changed a lot since it was formed

    • Star cluster

      N∗∼105, Tcross∼R∗v∼1 pc10 km/s∼105 yrN_*\sim10^5,\ T_{cross}\sim\frac{R_*}{v}\sim\frac{1\text{ pc}}{10 \text{ km/s}}\sim10^5\text{ yr}N∗​∼105, Tcross​∼vR∗​​∼10 km/s1 pc​∼105 yr
    Trelax∼108−9 yr≪1010 yr∼AgeT_{relax}\sim10^{8-9}\text{ yr}\ll 10^{10}\text{ yr}\sim AgeTrelax​∼108−9 yr≪1010 yr∼Age

    $T{relax}\gg T{Hubble}\Rightarrow$ Collisionless - the cluster remains what it looked like before

    • Galaxy

      N∗∼1011, Tcross∼R∗v∼10 kpc100 km/s∼108 yrN_*\sim10^{11},\ T_{cross}\sim\frac{R_*}{v}\sim\frac{10\text{ kpc}}{100 \text{ km/s}}\sim10^8\text{ yr}N∗​∼1011, Tcross​∼vR∗​​∼100 km/s10 kpc​∼108 yr
      Trelax∼1017−18 yr≫THubbleT_{relax}\sim10^{17-18}\text{ yr}\gg T_{Hubble}Trelax​∼1017−18 yr≫THubble​
PreviousWeek3: Potential TheoryNextWeek1

Last updated 4 years ago