Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  1. 恒星结构与演化

Chapter 14. Protostar

PreviousChapter 8. OpacityNextChapter 13. Star Formation

Last updated 4 years ago

Hayashi's Line (Track)

All types of stars have a radiative layer at the surface, even including low-mass stars, of which the outermost region is super-adiabatic. As a result, the following conditions are satisfied.

For the hydrostatic equation,

∫R∞drdPdr=−∫R∞ρGMr2dr\int_R^\infty\text dr\frac{\text dP}{\text dr}=-\int_R^\infty\rho\frac{GM}{r^2}\text dr∫R∞​drdrdP​=−∫R∞​ρr2GM​dr

Here the lower limit of the integral is taken as a certain radius $R$ close to the stellar surface, while the upper limit is formalistically taken to be infinity. The integrant in the RHS of the equation, however, contributes mainly in a small region around $R$. As a result,

P∞−PR=−GMR2∫R∞ρdr=−GMR21⟨κ⟩∫R∞ρκdrP_\infty-P_R=-\frac{GM}{R^2}\int_R^\infty\rho\text dr=-\frac{GM}{R^2}\frac1{\langle\kappa\rangle}\int_R^\infty\rho\kappa\text drP∞​−PR​=−R2GM​∫R∞​ρdr=−R2GM​⟨κ⟩1​∫R∞​ρκdr

where

⟨κ⟩≡∫R∞ρκdr∫R∞ρdr\langle\kappa\rangle\equiv\frac{\int_R^\infty\rho\kappa\text dr}{\int_R^\infty\rho\text dr}⟨κ⟩≡∫R∞​ρdr∫R∞​ρκdr​

Now we consider a special $R$ so that

This is the so-called photospheric condition and gives the definition of the photosphere radius $R$. For simplicity we set $P_\infty\sim0$, so we have

Let's consider a fully convective star within radius $R$, of which the main atmospheric opacity comes from $\ce{H-}$, and $a\sim0.5, b\sim9$. This is usually the case for protostars and red giants with huge, cool, convective envelope. Now that $\nabla\simeq\nabla_\text{ad}$, the EoS is

where $E\equiv0.4242$ is a numerical factor by solving Lane-Emben equation of $n=3/2$ numerically. And for ideal gas, this EoS is equivalent to

We have substituted $TR$ with $T\text{eff}$ because the effective temperature also denotes the temperature at the photoshpere.

Finally, the luminosity is given by

For given $M$, we have four equations and five unknown quantities ($L, R, T_\text{eff}, \rho_R, P_R$), so they can be reduced to ONE final relation,

Recall that $a\ll b$ for $\ce{H-}$ opacity, thus $A, B\simeq0$. Precisely, $A\simeq 0.01, B\simeq 0.14$, so $T_\text{eff}$ does not change a lot when $L$ and $M$ vary.

Notes

  • For given mass, the Hayashi's line is a very steep, almost vertical line in the HR diagram.

  • The dependency of position of Hayashi's line on $M$ is also weak, though $T_\text{eff}$ would slightly increase for higher mass.

  • The solution is realized when $E=E_\text{cr}=0.4242$. For fixed $M$ and $L$, if we allow $E$ to vary,

    It seems that if $E$ goes down, so will $T\text{eff}$, and the stars goes to the right hand side, known as the forbidden region. But if $E<E\text{cr}$, the Lane-Emden solution becomes collapse-type, which is unphysical (Hayashi 1961). On the contrary, $E$ could be larger than $E_\text{cr}$, when the actual stellar structure is given by a nested polytrope (radiative core + convective envelope).

  • In Hayashi's original paper, the definition of $E$ is different from ours.

    and

τ≡∫R∞ρκdr=23\tau\equiv\int_R^\infty\rho\kappa\text dr=\frac23τ≡∫R∞​ρκdr=32​
PR=23GMR21⟨κ⟩≃23GMR21κ0ρRaTeffbP_R=\frac23\frac{GM}{R^2}\frac1{\langle\kappa\rangle}\simeq\frac23\frac{GM}{R^2}\frac1{\kappa_0\rho_R^aT_\text{eff}^b}PR​=32​R2GM​⟨κ⟩1​≃32​R2GM​κ0​ρRa​Teffb​1​
PR=KρR5/3≡EGM1/3RρR5/3P_R=K\rho_R^{5/3}\equiv EGM^{1/3}R\rho_R^{5/3}PR​=KρR5/3​≡EGM1/3RρR5/3​
PR=kBμmpρRTeffP_R=\frac{k_B}{\mu m_\text p}\rho_RT_\text{eff}PR​=μmp​kB​​ρR​Teff​
L=4πσSBR2Teff4L=4\pi\sigma_{SB}R^2T_\text{eff}^4L=4πσSB​R2Teff4​
log⁡Teff=Alog⁡L+Blog⁡M+C\log T_\text{eff}=A\log L+B\log M+ClogTeff​=AlogL+BlogM+C
A=12⋅3a−19a+2b+3,B=a+39a+2b+3A=\frac12\cdot\frac{3a-1}{9a+2b+3},\quad B=\frac{a+3}{9a+2b+3}A=21​⋅9a+2b+33a−1​,B=9a+2b+3a+3​
log⁡Teff=3Blog⁡E+C′\log T_\text{eff}=3B\log E+C'logTeff​=3BlogE+C′

E′≡(2.5)3/2ξ12.5θ1′0.4=4πE−3/2=45.48E'\equiv(2.5)^{3/2}\xi_1^{2.5}\theta_1'^{0.4}=4\pi E^{-3/2}=45.48E′≡(2.5)3/2ξ12.5​θ1′0.4​=4πE−3/2=45.48
⇒Teff=−2Blog⁡E′+C′′\Rightarrow T_\text{eff}=-2B\log E'+C''⇒Teff​=−2BlogE′+C′′