Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Derivation
  • Internal Energy
  • Gravitational Energy
  • Virial Theorem
  • Total Energy
  • Kelvin-Helmholtz Mechanism
  1. 恒星结构与演化

Chapter 3. Virial Theorem

In a star, where hydrostatic equilibrium is achieved, two important energy reservoirs are connected,

Gravitational energy ∼ Internal energy\text{Gravitational energy }\sim\text{ Internal energy}Gravitational energy ∼ Internal energy

Derivation

Starting from

∂P∂m=−Gm4πr4\frac{\partial P}{\partial m}=-\frac{Gm}{4\pi r^4}∂m∂P​=−4πr4Gm​
⇒∫0M4πr3∂P∂mdm=−∫0MGmrdm\Rightarrow \int_0^M 4\pi r^3 \frac{\partial P}{\partial m}\text dm=-\int_0^M \frac{Gm}{r}\text dm⇒∫0M​4πr3∂m∂P​dm=−∫0M​rGm​dm

Internal Energy

LHS=∫PcP04πr3dP=(4πr3P)∣PcP0−3∫0R4πr2pdr=4πR3P0−3∫0VPdV\begin{align*} LHS&=\int_{P_c}^{P_0}4\pi r^3\text dP\\ &=\left(4\pi r^3 P\right)\bigg|_{P_c}^{P_0}-3\int_{0}^{R}4\pi r^2p\text dr\\ &=4\pi R^3P_0-3\int_0^V P\text dV \end{align*}LHS​=∫Pc​P0​​4πr3dP=(4πr3P)​Pc​P0​​−3∫0R​4πr2pdr=4πR3P0​−3∫0V​PdV​

In normal cases (main sequence stars), $P_0=0$.

For an evolved star, the stellar core is embedded in an envelope. At the surface of the star, $p_0\neq0$.

Thus

LHS=−3∫0VPdV=−3∫0MPρdm\begin{align*} LHS&=-3\int_0^V P\text dV=-3\int_0^M\frac{P}{\rho}\text dm \end{align*}LHS​=−3∫0V​PdV=−3∫0M​ρP​dm​

Gravitational Energy

The RHS can be interpreted as the gravitational potential energy.

RHS=−∫0MGmrdm≡Eg<0RHS=-\int_0^M\frac{Gm}{r}\text dm\equiv E_g<0RHS=−∫0M​rGm​dm≡Eg​<0

The gravitational energy is always negative.

Virial Theorem

Thus if we combine the LHS and the RHS, we obtain the virial theorom

−3∫0MPρdm=Eg-3\int_0^M\frac{P}{\rho}\text dm=E_\text g−3∫0M​ρP​dm=Eg​

Recall that we have only two assumptions

  • spherical gas

  • hydrostatic equilibrium

without considering any detail of the gas.

If we further assume ideal gas EoS

P=ρkBTμmpP=\frac{\rho k_BT}{\mu m_\text{p}}P=μmp​ρkB​T​
⇒Pρ=kBTμmp=(cP−cV)T=(γ−1)cVT\Rightarrow \frac{P}{\rho}=\frac{k_B T}{\mu m_\text{p}}=\left(c_P-c_V\right)T=\left(\gamma-1\right)c_VT⇒ρP​=μmp​kB​T​=(cP​−cV​)T=(γ−1)cV​T
cP=γcVc_P=\gamma c_VcP​=γcV​

where $\gamma$ is the heat capacity ratio, as well as the adiabatic index. $\gamma=5/3$ for mono-atomic gas.

Finally, the specific internal energy for ideal gas is simply

e=cVTe=c_VTe=cV​T

Therefore

Pρ=(γ−1)e\frac{P}{\rho}=\left(\gamma-1\right)eρP​=(γ−1)e

And the virial theorem can be expressed as

−Eg=3(γ−1)∫0MedM=3(γ−1)Eint-E_\text g=3\left(\gamma-1\right)\int_0^Me\text dM=3(\gamma-1)E_\text{int}−Eg​=3(γ−1)∫0M​edM=3(γ−1)Eint​

where $E_\text{int}$ corresponds to the total internal energy within a star.

For $\gamma=5/3$, $E\text{int}=-E\text g/2$.

Virial theorem directly links the total gravitational energy to the total internal energy of a star without knowing its detailed internal structure. Consider a more tightly bound star, whose $E_\text g$ is more negative, then it must be hotter to obtain corresponding internal energy.

  • Now we can revisit the temperature of the Sun.

    Eg=−αGM⊙2R⊙,α∼O(1)E_\text g=-\alpha\frac{GM^2_\odot}{R_\odot},\quad \alpha\sim\mathcal O(1)Eg​=−αR⊙​GM⊙2​​,α∼O(1)
    Eint=32kBμmp∫0MTdm≡32kBμmpTˉE_\text{int}=\frac32\frac{k_B}{\mu m_\text{p}}\int_0^MT\text dm\equiv \frac32\frac{k_B}{\mu m_\text{p}}\bar TEint​=23​μmp​kB​​∫0M​Tdm≡23​μmp​kB​​Tˉ

    So the mean temperature of the Sun is

    Tˉ=−23μmpkBEg3(γ−1)=2α9(γ−1)μmpkBGM⊙R⊙2\bar T=-\frac{2}{3}\frac{\mu m_\text{p}}{k_B}\frac{E_\text g}{3(\gamma-1)}=\frac{2\alpha}{9(\gamma-1)}\frac{\mu m_\text{p}}{k_B}\frac{GM_\odot}{R_\odot^2}Tˉ=−32​kB​μmp​​3(γ−1)Eg​​=9(γ−1)2α​kB​μmp​​R⊙2​GM⊙​​

    Given $\gamma=5/3$ and $\alpha\sim1$, $\bar T\sim4\times10^6$ K.

Total Energy

Etot=Eg+Eint=(4−3γ)Eint=4−3γ3(1−γ)EgE_\text{tot}=E_\text g+E_\text{int}=(4-3\gamma)E_\text{int}=\frac{4-3\gamma}{3(1-\gamma)}E_\text gEtot​=Eg​+Eint​=(4−3γ)Eint​=3(1−γ)4−3γ​Eg​
  • If $\gamma=5/3$, $E\text{tot}=E\text g/2<0$, so the star is safely bound.

  • If $\gamma\to4/3+$ (slightly over $4/3$), $E_\text{tot}$ is only sightly below zero, and the star is weakly bound.

    • For a massive star, where radiation pressure dominates, $\gamma\sim4/3$.

    • For cases where relativistic degenerate electron pressure donimates, such as a relativistic white dwarf, $\gamma\sim4/3$.

    • $\gamma=4/3$ is one critical condition for the onset of star formation, or in other word, the onset of hydrodynamics.

Kelvin-Helmholtz Mechanism

Let us consider a contracting star (fix the mass and lower the radius).

If the contracting timescale is long enough, the star can still be well approximated by hydrostatic equilibrium. In this way the energy loss rate in a unit time, that is, the luminosity, is given by

L=−dEtotdt=−12dEgdt(γ=5/3)=−12dEgdRdRdt\begin{align*} L&=-\frac{\text dE_\text{tot}}{\text dt}\\ &=-\frac12\frac{\text dE_\text{g}}{\text dt}\quad (\gamma=5/3)\\ &=-\frac12\frac{\text dE_\text{g}}{\text dR}\frac{\text dR}{\text dt} \end{align*}L​=−dtdEtot​​=−21​dtdEg​​(γ=5/3)=−21​dRdEg​​dtdR​​

while

dEintdt=−12dEgdt>0\frac{\text dE_\text{int}}{\text dt}=-\frac12\frac{\text dE_\text{g}}{\text dt}>0dtdEint​​=−21​dtdEg​​>0

So half of the gravitational energy loss is used for providing luminosity $L$. The other half is used to increase the internal energy (temperature). In other words, energy loss promotes $T$.

⇒ΔEtot=−ΔEint=−32kBμmpMΔT≡CΔT\Rightarrow \Delta E_\text{tot}=-\Delta E_\text{int}=-\frac32\frac{k_B}{\mu m_\text{p}}M\Delta T\equiv C\Delta T⇒ΔEtot​=−ΔEint​=−23​μmp​kB​​MΔT≡CΔT

The heat capacity is negative!

Now we can estimate the time it takes for the gravitational energy released by this so-called Kelvin-Holmholtz mechanism to be carried to the surface

tKH=∣Eg∣L∼GM22RLt_\text{KH}=\frac{\left|E_\text g\right|}{L}\sim\frac{GM^2}{2RL}tKH​=L∣Eg​∣​∼2RLGM2​

This timescale is known as the Kelvin-Helmholtz timescale.

  • KH timescale for the sun

    tKH≡GM⊙22R⊙L⊙∼107 st_\text{KH}\equiv\frac{GM^2_\odot}{2R_\odot L_\odot}\sim10^7\text{ s}tKH​≡2R⊙​L⊙​GM⊙2​​∼107 s

    The free-fall timescale $t_\text{ff}$ is $\sim 10^3$ s, so the Sun achieves hydrostatic equilibrium quickly, and our former approximation is reasonable.

  • KH timescale for star formation

    Originally we have a molecular cloud with typical number density $\bar n\sim 10^4$ cm$^{-3}$.

    tff=1Gρ=1Gnˉmp∼1 Myrt_\text{ff}=\frac{1}{\sqrt{G\rho}}=\frac{1}{\sqrt{G\bar nm_\text{p}}}\sim1\text{ Myr}tff​=Gρ​1​=Gnˉmp​​1​∼1 Myr

    So mostly within the free-fall time, the molecular cloud is dominated by hydrodynamics, until it reaches a stage where the density gets higher and the contraction slows down. It then becomes quasi-hydrostatic, when the Kelvin-Helmholtz mechanism starts to dominate. The KH timescale is about $10^7$ yr. As the contraction goes on, the temperature keeps rising. This quasi-hydrostatic state halts when the central temperature $T_c\sim10^7$ K, high enough to trigger nuclear burning.

PreviousChapter 7. Equation of StateNextChapter 11. Main Sequence

Last updated 4 years ago

where $c_P$ and $c_V$ are specific heat capacity at constant pressure and volume, respectively. For ideal gas, the second equation was derived by Julius von Mayer and is known as . $c_P$ and $c_V$ are related by

Mayer's relation