Chapter 1 Introduction

Basic Ideas

Isotropic & Homogeneous

  • Counts of faint galaxies in different directions

  • CMB ( 99% of photons in the universe ) - low fluctuations ( $10^{-5} \mathrm{K}$ )

Expansion

  • Hubble (1929) redshift-distance relation

    z=H0cd, v=H0dz=\frac{H_0}{c}d,\ v=H_0d
  • Scatter of galaxies - peculiar motions

Cosmic distance ladder

  • Cepheids

  • Ia SN

Fundamental Observers

  • Fluid (Plasma)

  • Substratum (相对宇宙静止)——comoving

  • We are not fundamental observers! (velocity relative to the sun, the Galactic center, M31, Virgo Cluster…) - subtract all the relative velocity - confirmed by highly isotropic CMB

Distances

  • 1 AU = 1.5e13 cm

  • 1 Parsec = 3.26 ly, mostly kpc or Mpc (8.7 kpc away from the Galactic center)

  • Radius of the Observable Universe (Inside the horizon) $\sim$ 4450 Mpc ( $c/H_0$ )

Masses

  • Solar mass $M_\odot$ = 2e33 g

  • Milky Way

    • Stellar mass $\sim$ 1e11 $M_\odot$

    • Total mass $\sim$ 1e12 $M_\odot$

Luminosity and Magnitudes

  • For flux $F$ and apparent magnitude $m$

F1/F2=100.4(m2m1)F_1/F_2=10^{0.4(m_2-m_1)}
  • Absolute magnitude $M$ - a distance of 10 pc

mM=2.5lg(d (pc)10)2=5lgd5m-M=2.5\lg\left(\frac{d\ \mathrm{(pc)}}{10}\right)^2=5\lg d-5

Cosmological Principle

  • Homogeneous - each point is ordinary

  • Isotropic - each direction is ordinary

  • Copernican Principle - humans, on the Earth or in the Solar System, are not privileged observers of the universe

  • Universal cosmic time

Redshifts

z=λobsλ0λ0,or 1+z=λobsλ0z=\frac{\lambda_{obs}-\lambda_0}{\lambda_0},\mathrm{or}\ 1+z=\frac{\lambda_{obs}}{\lambda_0}
  • Doppler Redshift is associated with a speed of recession

    v=cz, vc1+z=1+β1β, in generalv=cz,\ v\ll c\\ 1+z=\sqrt{\frac{1+\beta}{1-\beta}},\ \text{in general}

    The SR case is used when, for example, measuring the ejection velocity of gas clouds ejected from AGNs

  • We will prove that

    1+z=λobsλ0=aobsaem1+z=\frac{\lambda_{obs}}{\lambda_0}=\frac{a_{obs}}{a_{em}}

    where $a$ is the scale factor of the universe,$em$ stands for emission

Universal Expansion

  • 1929 Hubble Law - observing Cepheids

v=H0dH070 km/s/Mpc=100h km/s/Mpcv=H_0d\\ H_0\approx 70\ \mathrm{km/s/Mpc}=100\cdot h\ \mathrm{km/s/Mpc}
  • Today - Ia SN

  • Hubble time

tH1H014 Gyrt_H\equiv \frac{1}{H_0}\sim14\ \mathrm{Gyr}

Components of the Universe

Etot=m2c4+p2c2E_{tot}=\sqrt{m^2c^4+p^2c^2}
  • Non-relativistic $pc\ll mc^2$

Etotmc2+p22mE_{tot}\approx mc^2+\frac{p^2}{2m}

Baryons

  • Proton + Neutron + Electron

    • None relativistic

    • 0.5% stars

    • 4% Hydrogen/Helium

    • 0.03% heavy elements

0.3% Neutrinos

  • mass > 0

  • Relativistic

Radiation

  • $E=h\nu=hc/\lambda$, 0 mass

21% Dark Matter

  • Evidence

    • Rotation velocity of galaxies

    • Cluster

    • Gravitational lensing

74% Dark Energy

  • Accelerate universal expansion after z = 1

Critical Density

ρc=3H028πG=1.36×1011 M/Mpc\rho_c=\frac{3H_0^2}{8\pi G}=1.36\times 10^{11}\ M_\odot/\text{Mpc}

Last updated