Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Basic Ideas
  • Isotropic & Homogeneous
  • Expansion
  • Cosmic distance ladder
  • Fundamental Observers
  • Distances
  • Masses
  • Luminosity and Magnitudes
  • Cosmological Principle
  • Redshifts
  • Universal Expansion
  • Components of the Universe
  1. 物理宇宙学基础

Chapter 1 Introduction

Basic Ideas

Isotropic & Homogeneous

  • Counts of faint galaxies in different directions

  • CMB ( 99% of photons in the universe ) - low fluctuations ( $10^{-5} \mathrm{K}$ )

Expansion

  • Hubble (1929) redshift-distance relation

    z=H0cd, v=H0dz=\frac{H_0}{c}d,\ v=H_0dz=cH0​​d, v=H0​d
  • Scatter of galaxies - peculiar motions

Cosmic distance ladder

  • Cepheids

  • Ia SN

Fundamental Observers

  • Fluid (Plasma)

  • Substratum (相对宇宙静止)——comoving

  • We are not fundamental observers! (velocity relative to the sun, the Galactic center, M31, Virgo Cluster…) - subtract all the relative velocity - confirmed by highly isotropic CMB

Distances

  • 1 AU = 1.5e13 cm

  • 1 Parsec = 3.26 ly, mostly kpc or Mpc (8.7 kpc away from the Galactic center)

  • Radius of the Observable Universe (Inside the horizon) $\sim$ 4450 Mpc ( $c/H_0$ )

Masses

  • Solar mass $M_\odot$ = 2e33 g

  • Milky Way

    • Stellar mass $\sim$ 1e11 $M_\odot$

    • Total mass $\sim$ 1e12 $M_\odot$

Luminosity and Magnitudes

  • For flux $F$ and apparent magnitude $m$

F1/F2=100.4(m2−m1)F_1/F_2=10^{0.4(m_2-m_1)}F1​/F2​=100.4(m2​−m1​)
  • Absolute magnitude $M$ - a distance of 10 pc

m−M=2.5lg⁡(d (pc)10)2=5lg⁡d−5m-M=2.5\lg\left(\frac{d\ \mathrm{(pc)}}{10}\right)^2=5\lg d-5m−M=2.5lg(10d (pc)​)2=5lgd−5

Cosmological Principle

  • Homogeneous - each point is ordinary

  • Isotropic - each direction is ordinary

  • Copernican Principle - humans, on the Earth or in the Solar System, are not privileged observers of the universe

  • Universal cosmic time

Redshifts

z=λobs−λ0λ0,or 1+z=λobsλ0z=\frac{\lambda_{obs}-\lambda_0}{\lambda_0},\mathrm{or}\ 1+z=\frac{\lambda_{obs}}{\lambda_0}z=λ0​λobs​−λ0​​,or 1+z=λ0​λobs​​
  • Doppler Redshift is associated with a speed of recession

    v=cz, v≪c1+z=1+β1−β, in generalv=cz,\ v\ll c\\ 1+z=\sqrt{\frac{1+\beta}{1-\beta}},\ \text{in general}v=cz, v≪c1+z=1−β1+β​​, in general

    The SR case is used when, for example, measuring the ejection velocity of gas clouds ejected from AGNs

  • We will prove that

    1+z=λobsλ0=aobsaem1+z=\frac{\lambda_{obs}}{\lambda_0}=\frac{a_{obs}}{a_{em}}1+z=λ0​λobs​​=aem​aobs​​

    where $a$ is the scale factor of the universe,$em$ stands for emission

Universal Expansion

  • 1929 Hubble Law - observing Cepheids

v=H0dH0≈70 km/s/Mpc=100⋅h km/s/Mpcv=H_0d\\ H_0\approx 70\ \mathrm{km/s/Mpc}=100\cdot h\ \mathrm{km/s/Mpc}v=H0​dH0​≈70 km/s/Mpc=100⋅h km/s/Mpc
  • Today - Ia SN

  • Hubble time

tH≡1H0∼14 Gyrt_H\equiv \frac{1}{H_0}\sim14\ \mathrm{Gyr}tH​≡H0​1​∼14 Gyr

Components of the Universe

Etot=m2c4+p2c2E_{tot}=\sqrt{m^2c^4+p^2c^2}Etot​=m2c4+p2c2​
  • Non-relativistic $pc\ll mc^2$

Etot≈mc2+p22mE_{tot}\approx mc^2+\frac{p^2}{2m}Etot​≈mc2+2mp2​

Baryons

  • Proton + Neutron + Electron

    • None relativistic

    • 0.5% stars

    • 4% Hydrogen/Helium

    • 0.03% heavy elements

0.3% Neutrinos

  • mass > 0

  • Relativistic

Radiation

  • $E=h\nu=hc/\lambda$, 0 mass

21% Dark Matter

  • Evidence

    • Rotation velocity of galaxies

    • Cluster

    • Gravitational lensing

74% Dark Energy

  • Accelerate universal expansion after z = 1

Critical Density

ρc=3H028πG=1.36×1011 M⊙/Mpc\rho_c=\frac{3H_0^2}{8\pi G}=1.36\times 10^{11}\ M_\odot/\text{Mpc}ρc​=8πG3H02​​=1.36×1011 M⊙​/Mpc
PreviousChapter 2 Newtonian CosmologyNextChapter 5* Monochromatic Flux, K-correction

Last updated 4 years ago