Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Ideal Gas
  • Radiation Pressure
  • Degenerate Electron Gas
  • EoS in a Star
  1. 恒星结构与演化

Chapter 7. Equation of State

Here we discuss two effects producing pressure.

Ideal Gas

Above all, for ideal gas, the EoS gives

Pgas=ρkBTμmpP_\text{gas}=\frac{\rho k_BT}{\mu m_\text{p}}Pgas​=μmp​ρkB​T​

Radiation Pressure

Prad=13aT4P_\text{rad}=\frac13aT^4Prad​=31​aT4

Let us consider gas-radiation mixed fluid

P=Pgas+Prad=ρkBTμmp+13aT4P=P_\text{gas}+P_\text{rad}=\frac{\rho k_BT}{\mu m_\text{p}}+\frac13aT^4P=Pgas​+Prad​=μmp​ρkB​T​+31​aT4

Define

β≡PgasP\beta\equiv\frac{P_\text{gas}}{P}β≡PPgas​​

Let's check the $\beta$ value for different stars

  • Sun: $\rho_c\sim150$ g/cm$^3$, $T_c\sim10^7$ K, $\Rightarrow\beta\sim1$

  • Massive star ($20 M_\odot$): $\rho_c\sim5$ g/cm$^3$, $T_c\sim4\times10^7$ K, $\Rightarrow\beta\sim0.84$

Since the density

ρ=μmpkBT(P−a3T4)=ρ(P,T)\rho=\frac{\mu m_\text{p}}{k_BT}\left(P-\frac a3T^4\right)=\rho(P,T)ρ=kB​Tμmp​​(P−3a​T4)=ρ(P,T)

We can define two derivatives

α≡(∂ln⁡ρ∂ln⁡P)T=PPgas=1β,δ≡−(∂ln⁡ρ∂ln⁡T)P=P+3PradPgas=4−3ββ\alpha\equiv\left(\frac{\partial \ln \rho}{\partial \ln P}\right)_T=\frac{P}{P_\text{gas}}=\frac1\beta,\quad \delta\equiv-\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_P=\frac{P+3P_\text{rad}}{P_\text{gas}}=\frac{4-3\beta}{\beta}α≡(∂lnP∂lnρ​)T​=Pgas​P​=β1​,δ≡−(∂lnT∂lnρ​)P​=Pgas​P+3Prad​​=β4−3β​

The specific internal energy is

e(ρ,T)=egas+erad=32kBμmpT+1ρaT4e(\rho,T)=e_\text{gas}+e_\text{rad}=\frac{3}{2}\frac{k_B}{\mu m_\text{p}}T+\frac1\rho aT^4e(ρ,T)=egas​+erad​=23​μmp​kB​​T+ρ1​aT4

Thus the specific heat capacity (when the pressure is a constant) is

cP≡(dedT)P=(∂e∂T)P+P[∂(1/ρ)∂T]P=(∂e∂T)ρ+(∂e∂ρ)T(∂ρ∂T)P−Pρ2(∂ρ∂T)P=kBμmp[32+(4+δ)3PradPgas]+kBμmpδPPgas=kBμmp[32+(4+4−3ββ)3(1−β)β+4−3ββ2]=kBμmp[32+3(4+β)(1−β)β2+4−3ββ2]\begin{align*} c_P&\equiv\left(\frac{\text d e}{\text d T}\right)_P=\left(\frac{\partial e}{\partial T}\right)_P+P\left[\frac{\partial (1/\rho)}{\partial T}\right]_P\\ &=\left(\frac{\partial e}{\partial T}\right)_\rho+\left(\frac{\partial e}{\partial \rho}\right)_T\left(\frac{\partial \rho}{\partial T}\right)_P-\frac{P}{\rho^2}\left(\frac{\partial \rho}{\partial T}\right)_P\\ &=\frac{k_B}{\mu m_\text{p}}\left[\frac{3}{2}+(4+\delta)\frac{3P_\text{rad}}{P_\text{gas}}\right]+\frac{k_B}{\mu m_\text{p}}\frac{\delta P}{P_\text{gas}}\\ &=\frac{k_B}{\mu m_\text{p}}\left[\frac{3}{2}+\left(4+\frac{4-3\beta}{\beta}\right)\frac{3(1-\beta)}{\beta}+\frac{4-3\beta}{\beta^2}\right]\\ &=\frac{k_B}{\mu m_\text{p}}\left[\frac{3}{2}+\frac{3(4+\beta)(1-\beta)}{\beta^2}+\frac{4-3\beta}{\beta^2}\right] \end{align*}cP​​≡(dTde​)P​=(∂T∂e​)P​+P[∂T∂(1/ρ)​]P​=(∂T∂e​)ρ​+(∂ρ∂e​)T​(∂T∂ρ​)P​−ρ2P​(∂T∂ρ​)P​=μmp​kB​​[23​+(4+δ)Pgas​3Prad​​]+μmp​kB​​Pgas​δP​=μmp​kB​​[23​+(4+β4−3β​)β3(1−β)​+β24−3β​]=μmp​kB​​[23​+β23(4+β)(1−β)​+β24−3β​]​

When gas pressure dominates, $\beta=1$, thus

cP=52kBμmpc_P=\frac52\frac{k_B}{\mu m_\text{p}}cP​=25​μmp​kB​​

When radiation dominates, $\beta=0$, and $c_P$ diverges.

The adiabatic temperature gradient

∇ad=δρcPPT=kBμmpcPδβ=[32+3(4+β)(1−β)β2+4−3ββ2]−14−3ββ2=8−6β32−24β−3β2\begin{align*} \nabla_\text{ad}&=\frac{\delta}{\rho c_P}\frac PT=\frac{k_B}{\mu m_\text{p}c_P}\frac{\delta}{\beta}\\ &=\left[\frac{3}{2}+\frac{3(4+\beta)(1-\beta)}{\beta^2}+\frac{4-3\beta}{\beta^2}\right]^{-1}\frac{4-3\beta}{\beta^2}\\ &=\frac{8-6\beta}{32-24\beta-3\beta^2} \end{align*}∇ad​​=ρcP​δ​TP​=μmp​cP​kB​​βδ​=[23​+β23(4+β)(1−β)​+β24−3β​]−1β24−3β​=32−24β−3β28−6β​​

The heat index is

γ≡(∂ln⁡P∂ln⁡ρ)s=[(∂ln⁡ρ∂ln⁡P)T+(∂ln⁡ρ∂ln⁡T)P(∂ln⁡T∂ln⁡P)s]−1=1α−δ∇ad=32−24β−3β324−21β={5/3,β=14/3+β/6+O(β2),β→0\begin{align*} \gamma&\equiv\left(\frac{\partial \ln P}{\partial\ln \rho}\right)_s=\left[\left(\frac{\partial \ln \rho}{\partial\ln P}\right)_T+\left(\frac{\partial \ln \rho}{\partial\ln T}\right)_P\left(\frac{\partial \ln T}{\partial\ln P}\right)_s\right]^{-1}\\ &=\frac1{\alpha-\delta\nabla_\text{ad}}\\ &=\frac{32-24\beta-3\beta^3}{24-21\beta}\\ &=\left\{ \begin{array}{l} 5/3,\quad \beta=1\\ 4/3+\beta/6+\mathcal{O}(\beta^2),\quad \beta\to0\\ \end{array} \right. \end{align*}γ​≡(∂lnρ∂lnP​)s​=[(∂lnP∂lnρ​)T​+(∂lnT∂lnρ​)P​(∂lnP∂lnT​)s​]−1=α−δ∇ad​1​=24−21β32−24β−3β3​={5/3,β=14/3+β/6+O(β2),β→0​​

This fact is extremely important for the stability of a star.

  • We revisit the virial theorem,

    Etot=3γ−43(γ−1)EgE_\text{tot}=\frac{3\gamma-4}{3(\gamma-1)}E_\text gEtot​=3(γ−1)3γ−4​Eg​

    When $\beta\to0$, $E\text{tot}\to\beta E\text g/2$. Since $E_\text g0$, the star can exist (thanks to the fact that $\beta>4/3$).

  • We try to compress a star of the mass $M$ and discuss the stability afterwards.

    The gravitational force and the pressure gradient force are

    Fg∼−GMR2,FP∼1ρPR∝ργ−1RF_\text g\sim-\frac{GM}{R^2},\quad F_{P}\sim\frac1\rho\frac{P}{R}\propto\frac{\rho^{\gamma-1}}{R}Fg​∼−R2GM​,FP​∼ρ1​RP​∝Rργ−1​

    Since $M\propto\rho R^3$ is fixed, $\rho\propto R^{-3}$, thus

    Fg∝−R−2,FP∝ργ−1R∝R−3γ+2∝R−3(γ−4/3)−2F_\text g\propto-R^{-2},\quad F_{P}\propto\frac{\rho^{\gamma-1}}{R}\propto R^{-3\gamma+2}\propto R^{-3(\gamma-4/3)-2}Fg​∝−R−2,FP​∝Rργ−1​∝R−3γ+2∝R−3(γ−4/3)−2

    Obviously, when $\gamma>4/3$, when $R$ is compressed, $F_\text{g}+F_P>0$, so the net force resists the compression. If $\gamma<4/3$, the star is dynamically unstable and the star would finally collapse.

Degenerate Electron Gas

For cold and dense gas, quantum effects cause degenerate pressure.

For zero-temperature Fermions such as electrons, in the phase space, they all lie beneath a Fermi momentum. The total number of electrons $N$ is given by

N=2∫dxdydzdpxdpydpzh3=2Vh3∫0pF4πp2dpN=2\int\frac{\text dx\text dy\text dz\text dp_x\text dp_y\text dp_z}{h^3}=\frac{2V}{h^3}\int_0^{p_\text F}4\pi p^2\text dpN=2∫h3dxdydzdpx​dpy​dpz​​=h32V​∫0pF​​4πp2dp

where the factor of 2 comes from the electron spin. Thus the number density $n_e$ is given by

ne=NV=8πpF33h3n_e=\frac NV=\frac{8\pi p_\text F^3}{3h^3}ne​=VN​=3h38πpF3​​

Note that pressure is simply the surface integral of momentum flux crossing each surface element $\Omega_s$

Pe=14π∫2π∫0∞f(p)u(p)pcos⁡2θdpdΩsP_e=\frac1{4\pi}\int_{2\pi}\int_0^\infty f(p)u(p)p\cos^2\theta\text dp\text d\Omega_sPe​=4π1​∫2π​∫0∞​f(p)u(p)pcos2θdpdΩs​

where $f(p)$ is the distribution function

f(p)={8πp2h3,p>pF0,p>pFf(p)=\left\{ \begin{array}{c} \frac{8\pi p^2}{h^3},\quad p>p_\text F\\ 0,\quad p>p_\text F \end{array} \right.f(p)={h38πp2​,p>pF​0,p>pF​​

thus

Pe=8π3h3∫0pFp3u(p)dpP_e=\frac{8\pi}{3h^3}\int_0^{p_\text F}p^3u(p)\text dpPe​=3h38π​∫0pF​​p3u(p)dp

Since special relativity gives

p=meu1−u2/c2  ⟺  u=pme2+p2/c2p=\frac{m_eu}{\sqrt{1-{u^2}/{c^2}}}\iff u=\frac{p}{\sqrt{m_e^2+p^2/c^2}}p=1−u2/c2​me​u​⟺u=me2​+p2/c2​p​

Let $\xi=p/mec, x=p\text F/m_ec$, we have

Pe=8πc5me43h3∫0xξ4(1+ξ2)1/2dξP_e=\frac{8\pi c^5m_e^4}{3h^3}\int_0^x\frac{\xi^4}{\left(1+\xi^2\right)^{1/2}}\text d\xiPe​=3h38πc5me4​​∫0x​(1+ξ2)1/2ξ4​dξ

Define

f(x)=∫0xξ4(1+ξ2)1/2dξ=18{x(2x2−3)(1+x2)1/2+3ln⁡[x+(1+x2)1/2]}f(x)=\int_0^x\frac{\xi^4}{\left(1+\xi^2\right)^{1/2}}\text d\xi=\frac18\left\{x\left(2x^2-3\right)\left(1+x^2\right)^{1/2}+3\ln\left[x+\left(1+x^2\right)^{1/2}\right]\right\}f(x)=∫0x​(1+ξ2)1/2ξ4​dξ=81​{x(2x2−3)(1+x2)1/2+3ln[x+(1+x2)1/2]}

For non-relativistic case, $x\to 0$

f(x)∼∫0xξ4dξ=15x5f(x)\sim\int_0^x\xi^4\text d\xi=\frac15x^5f(x)∼∫0x​ξ4dξ=51​x5
⇒Pe=120(3π)2/3h2mene5/3∼1013(ρμe)5/3 g/cm/s−2\Rightarrow P_e=\frac1{20}\left(\frac3\pi\right)^{2/3}\frac{h^2}{m_e}n_e^{5/3}\sim10^{13}\left(\frac{\rho}{\mu_e}\right)^{5/3}\text{ g/cm/s}^{-2}⇒Pe​=201​(π3​)2/3me​h2​ne5/3​∼1013(μe​ρ​)5/3 g/cm/s−2

For extreme relativistic case, $x\to \infty$

f(x)∼∫0xξ3dξ=14x4f(x)\sim\int_0^x\xi^3\text d\xi=\frac14x^4f(x)∼∫0x​ξ3dξ=41​x4
⇒Pe=(3π)1/3hc8ne4/3∼1015(ρμe)4/3 g/cm/s−2\Rightarrow P_e=\left(\frac3\pi\right)^{1/3}\frac{hc}{8}n_e^{4/3}\sim10^{15}\left(\frac{\rho}{\mu_e}\right)^{4/3}\text{ g/cm/s}^{-2}⇒Pe​=(π3​)1/38hc​ne4/3​∼1015(μe​ρ​)4/3 g/cm/s−2

EoS in a Star

In our discussion above, we see that

Pgas∝ρTP_\text{gas}\propto \rho TPgas​∝ρT
Prad∝T4P_\text{rad}\propto T^4Prad​∝T4
Pe∝ρ4/3−5/3P_e\propto\rho^{4/3-5/3}Pe​∝ρ4/3−5/3

Therefore, radiation pressure dominates when $T$ is high and $\rho$ is low, while the degenerate pressure dominates in the exact opposite. So the $T-\rho$ plane can be divided into three

Notes:

  1. Our Sun generally lies in the region of ideal gas.

    • Increase the mass - the stellar center may become radiation dominated (e.g., maassive stars);

    • Decrease the mass - the stellar center may fall into the electron degenerate region (e.g., brown dwarfs).

  2. For white dwarfs in non-relativistic region, $E\text{tot}<0$, even if nuclear burning is lighted somewhere, the star itself is still stable - helium flash. For white dwarfs in relativistic regions, however, since $E\text{tot}$ is only slightly below 0, any nuclear fusion may lead to destructive explosions, such as Type Ia SN.

Previous恒星结构与演化NextChapter 3. Virial Theorem

Last updated 4 years ago