Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Total Energy Conservation of a Star
  • Energy Source of the Sun
  1. 恒星结构与演化

Chapter 4. Energy Conservation

PreviousChapter 11. Main SequenceNextChapter 12. Post-Main Sequence

Last updated 4 years ago

Let us consider the net energy in a unit time passing the sphere of a radius $r$, $L(r)$, or $L(m)$.

In the shell $[r,r+\text dr]$, or $[m,m+\text dm]$

  1. If no energy generation/absorption

    • Eulerian picture: fixed fluid position

      ∂L∂r=0\frac{\partial L}{\partial r}=0∂r∂L​=0
    • Lagrange's picture: the coordinates move with mass

      ∂L∂m=0\frac{\partial L}{\partial m}=0∂m∂L​=0
    • In astrophysics, Lagrange's picture is usually adopted. One example is the perturbation theory.

      In the perturbation theory, people usually consider a mass element with certain thermaldynamical quantities, such as $\rho$, $T$, $P$, etc. As the mass element moves, the change in each quantity can be easily characterized with its partial derivative with respect to $m$. Important applications include

      • Stellar pulsation

      • Tidal perturbation of NS/WD and the gravitational radiation (GW)

  2. If the energy is generated by nuclear burning

    dL=4πr2ρdr⋅εnuc\text dL=4\pi r^2\rho\text dr\cdot\varepsilon_\text{nuc}dL=4πr2ρdr⋅εnuc​

    where $\varepsilon_\text{nuc}$ is the energy generation rate per unit mass. Then

    ∂L∂m=εnuc\frac{\partial L}{\partial m}=\varepsilon_\text{nuc}∂m∂L​=εnuc​

    and

    ΔE=Δmc2∼Δt∫0Mεnucdm\Delta E=\Delta mc^2\sim\Delta t\int_0^M\varepsilon_\text{nuc}\text dmΔE=Δmc2∼Δt∫0M​εnuc​dm
  3. If the energy is used to increase the internal energy and/or expand/contract a mass shell

    The first law in thermodynamics requires

    de+Pd(1ρ)=Tds⇒∂e∂t+P∂∂t(1ρ)=T∂s∂t\text de+P\text{d}\left(\frac1\rho\right)=T\text ds\Rightarrow \frac{\partial e}{\partial t}+P\frac{\partial}{\partial t}\left(\frac1\rho\right)=T\frac{\partial s}{\partial t}de+Pd(ρ1​)=Tds⇒∂t∂e​+P∂t∂​(ρ1​)=T∂t∂s​

    we $s$ is the specific entropy. Thus

    ∂L∂m=εnuc−T∂s∂t≡εnuc+εgas\frac{\partial L}{\partial m}=\varepsilon_\text{nuc}-T\frac{\partial s}{\partial t}\equiv \varepsilon_\text{nuc}+\varepsilon_\text{gas}∂m∂L​=εnuc​−T∂t∂s​≡εnuc​+εgas​

    For contraction, $\varepsilon\text{gas}>0$, or expansion, $\varepsilon\text{gas}<0$. Therefore, if there is no nuclear burning, $\partial L/\partial m=\varepsilon_\text{gas}$, and the total luminosity is given by

    L=∫0M∂L∂mdm=−∫0Mdm[∂e∂t+P∂∂t(1ρ)]=−dEintdt−∫0MP∂∂t(1ρ)dm\begin{align*} L&=\int_0^M\frac{\partial L}{\partial m}\text dm=-\int_0^M\text dm\left[\frac{\partial e}{\partial t}+P\frac{\partial}{\partial t}\left(\frac1\rho\right)\right]\\ &=-\frac{\text dE_\text{int}}{\text dt}-\int_0^MP\frac{\partial}{\partial t}\left(\frac1\rho\right)\text dm \end{align*}L​=∫0M​∂m∂L​dm=−∫0M​dm[∂t∂e​+P∂t∂​(ρ1​)]=−dtdEint​​−∫0M​P∂t∂​(ρ1​)dm​

    From the perspective of energy conservation, the second term should correspond to the time derivative of $E_\text{g}$. Now we give a proof.

    The virial theorem reveals that

    Eg=−3∫0MPρdmE_g=-3\int_0^M\frac{P}{\rho}\text dmEg​=−3∫0M​ρP​dm

    The time derivative is thus

    dEgdt=−3∫0M[∂P∂t1ρ+P∂∂t(1ρ)]dm\frac{\text dE_\text{g}}{\text dt}=-3\int_0^M\left[\frac{\partial P}{\partial t}\frac{1}{\rho}+P\frac{\partial}{\partial t}\left(\frac1\rho\right)\right]\text dmdtdEg​​=−3∫0M​[∂t∂P​ρ1​+P∂t∂​(ρ1​)]dm

    We just need to prove

    −3∫0M[+P∂∂t(1ρ)]dm=∫0MP∂∂t(1ρ)dm⇐3P∂∂t(1ρ)+4∂P∂t1ρ=0-3\int_0^M\left[+P\frac{\partial}{\partial t}\left(\frac1\rho\right)\right]\text dm=\int_0^MP\frac{\partial}{\partial t}\left(\frac1\rho\right)\text dm \Leftarrow 3P\frac{\partial}{\partial t}\left(\frac1\rho\right)+4\frac{\partial P}{\partial t}\frac{1}{\rho}=0−3∫0M​[+P∂t∂​(ρ1​)]dm=∫0M​P∂t∂​(ρ1​)dm⇐3P∂t∂​(ρ1​)+4∂t∂P​ρ1​=0
      ⟺  3∂ln⁡(1/ρ)∂t+4∂ln⁡P∂t=4∂ln⁡P∂t−3∂ln⁡ρ∂t=0\iff 3\frac{\partial \ln(1/\rho)}{\partial t}+4\frac{\partial \ln P}{\partial t}=4\frac{\partial \ln P}{\partial t}-3\frac{\partial \ln \rho}{\partial t}=0⟺3∂t∂ln(1/ρ)​+4∂t∂lnP​=4∂t∂lnP​−3∂t∂lnρ​=0
      ⟺  ∂∂tln⁡(Pρ4/3)=0\iff\frac{\partial}{\partial t}\ln\left(\frac{P}{\rho^{4/3}}\right)=0⟺∂t∂​ln(ρ4/3P​)=0

    This is true for the radiation-dominated case, where

    P∝ρ4/3P\propto\rho^{4/3}P∝ρ4/3

    Finally, we have derived

    L=−ddt(Eint+Eg)L=-\frac{\text d}{\text dt}\left(E_\text{int}+E_\text g\right)L=−dtd​(Eint​+Eg​)

    simply assuming spherical symmetry, hydrostatic equilibrium in radiation-dominated fluid.

  4. If neutrinos carry energy away, we have to somehow modify our equation

    ∂L∂m=εnuc+εgas−εν\frac{\partial L}{\partial m}=\varepsilon_\text{nuc}+\varepsilon_\text{gas}-\varepsilon_\nu∂m∂L​=εnuc​+εgas​−εν​

    Neutrinos hardly interact with matter. The typical cross section for neutrino scattering is $\sigma\nu\sim10^{-44}$ cm$^{2}$, about 20 orders of magnitude smaller than the cross section of Thomson scattering. Take the Sun as an example, the mean free path $l\text{mfp}$ of neutrinos in the Sun is

    lmfp,ν=1nσν∼1019−20 cm>1 AU≫R⊙l_{\text{mfp},\nu}=\frac1{n\sigma_\nu}\sim10^{19-20}\text{ cm}>1\text{ AU}\gg R_\odotlmfp,ν​=nσν​1​∼1019−20 cm>1 AU≫R⊙​

    As a result, neutrinos produced in the Sun escape without any scattering. They can be treated as an energy sink in stars.

Total Energy Conservation of a Star

The energy conservation law of the whole star is

where the nuclear energy $E_\text{nuc}$ is given by

On the other hand,

Energy Source of the Sun

Nuclear timescale

is the timescale of continuous, stable nuclear burning in a star. Considering the hydrogen fusion

\ce{4 ^1H->^4He}\Rightarrow Q=\frac{\Delta mc^2}{4m_\text{p}}=6.3\times10^{18}\text{ erg/g}

where $Q$ stands for the available energy per unit mass.

For the Sun,

Recall that

This is usually the case for a normal, stable star.

What Powers Our Sun?

The energy conversion efficiency of the Sun is approximately

According to radioactive elements in comets, the age of our system is at least $\sim 10$ Gyr.

  1. Gravity

    Considering the energy conversion efficiency, the Sun would be burnt out after

    Not enough!

  2. Chemical Reaction

    For hydrogen atoms, $E\sim13.6$ eV, so

    Not enough!

  3. Nuclear Burning

    Sufficient!

L+Lν=−ddt(Eint+Eg+Enuc)L+L_\nu=-\frac{\text d}{\text dt}\left(E_\text{int}+E_\text{g}+E_\text{nuc}\right)L+Lν​=−dtd​(Eint​+Eg​+Enuc​)
Enuc=∫dt∫0MεnucdmE_\text{nuc}=\int\text dt\int_0^M\varepsilon_\text{nuc}\text dmEnuc​=∫dt∫0M​εnuc​dm
L=∫0M(εnuc+εgas−εν)dm=−dEnucdt−Lν+∫0MεgasdmL=\int_0^M\left(\varepsilon_\text{nuc}+\varepsilon_\text{gas}-\varepsilon_\nu\right)\text dm=-\frac{\text dE_\text{nuc}}{\text dt}-L_\nu+\int_0^M\varepsilon_\text{gas}\text dmL=∫0M​(εnuc​+εgas​−εν​)dm=−dtdEnuc​​−Lν​+∫0M​εgas​dm
⇒ddt(Eint+Egas)+∫0Mεgasdm=0\Rightarrow \frac{\text d}{\text dt}\left(E_\text{int}+E_\text{gas}\right)+\int_0^M\varepsilon_\text{gas}\text dm=0⇒dtd​(Eint​+Egas​)+∫0M​εgas​dm=0
tnuc=EnucLt_\text{nuc}=\frac{E_\text{nuc}}{L}tnuc​=LEnuc​​
tnuc∼M⊙QL⊙∼102 Gyrt_\text{nuc}\sim\frac{M_\odot Q}{L_\odot}\sim10^2\text{ Gyr}tnuc​∼L⊙​M⊙​Q​∼102 Gyr
tsc≈tff∼103 s≪tKH∼100−1 Myr≪tnuc∼102 Gyrt_\text{sc}\approx t_\text{ff}\sim 10^3\text{ s}\quad\ll\quad t_\text{KH}\sim 10^{0-1}\text{ Myr}\quad \ll \quad t_\text{nuc}\sim10^2\text{ Gyr}tsc​≈tff​∼103 s≪tKH​∼100−1 Myr≪tnuc​∼102 Gyr
∼L⊙M⊙=1.5 erg/s/g\sim\frac{L_\odot}{M_\odot}=1.5\text{ erg/s/g}∼M⊙​L⊙​​=1.5 erg/s/g
Q∼EgM⊙∼GM⊙R⊙=2×1015 erg/sQ\sim\frac{E_\text{g}}{M_\odot}\sim\frac{GM_\odot}{R_\odot}=2\times10^{15}\text{ erg/s}Q∼M⊙​Eg​​∼R⊙​GM⊙​​=2×1015 erg/s
tg∼1015 s∼102 Myrt_\text{g}\sim10^{15}\text{ s}\sim10^2\text{ Myr}tg​∼1015 s∼102 Myr
Q∼13.6 eVmp=1013 erg/g⇒tchem<1 MyrQ\sim \frac{13.6\text{ eV}}{m_\text{p}}=10^{13}\text{ erg}/g\Rightarrow t_\text{chem}<1\text{ Myr}Q∼mp​13.6 eV​=1013 erg/g⇒tchem​<1 Myr
tnuc∼102 Gyrt_\text{nuc}\sim10^2\text{ Gyr}tnuc​∼102 Gyr