Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Application of the Luminosity Distance
  • Two main applications
  • Luminosity function
  • Distance modulus
  • Type Ia Supernovae
  • Parameter estimation
  • Alternative Explanations
  • Evolution
  • Intersellar dust
  • Grey dust
  • Assessments
  • Dark Energy
  1. 物理宇宙学基础

Chapter 6 Supernova cosmology

PreviousChapter 7 Thermal History of the UniverseNextChapter 5 Redshifts and Distances

Last updated 4 years ago

Application of the Luminosity Distance

Two main applications

  • The luminosity distance $d_L$ is a function of redshift $z$, and there are usually two applications

    • Given observed flux $F_{obs}$, if we know the redshift of a certain galaxy and universe parameters well, we can calculate the luminosity distance, and then the absolute luminosity - luminosity function

    • Given observed flux $F{obs}$, for some certain objects (Cepheids, SNe) we know the absolute luminosity and thus the luminosity distance - estimation of $\Omega_m,\Omega\Lambda$

Luminosity function

  • Describes the number of galaxies per unit volume with luminosity in the range $[L, L+d L]$

  • Schechter function

    Φ(L)dL=ϕ∗(LL∗)αe−L/L∗dLL∗\Phi(L) d L=\phi^{*}\left(\frac{L}{L^{*}}\right)^{\alpha} e^{-L / L^{*}} \frac{d L}{L^{*}}Φ(L)dL=ϕ∗(L∗L​)αe−L/L∗L∗dL​
    • $\alpha<0$ - Faint end slope (diverges at the faint end - there must be a turn-over)

    • $L^*$ - Characteristic (fiducial) luminosity

    • $\phi^*$ - Overall normalisation

  • Luminosity-weighted luminosity function - $L\Phi(L)$

    • Converge if $\alpha>-2$

  • Well fitted by a Schechter function in the local universe

Distance modulus

For cosmology cases, 10 pc is too small and thus not practical, while 1 Mpc is usually used as $d_{L,0}$

For small $z$,

Type Ia Supernovae

  • Nuclear explosions of carbon/oxygen white dwarfs in binary systems

  • The peak luminosity appears to be well-correlated with decay time

    The larger $L_{peak}$, the slower the decay

    • $M_B$ - peak absolute luminosity in B-band

    • $\Delta m_{15}$ - the observed change in apparent magnitude 15 days after the peak

  • The maximum light of Type Ia Supernovae appears to be dimmer than that in an empty universe ($\Omegak=1$) and that in a matter dominate universe ($\Omega_m=0.25, \Omega\Lambda=0$)

  • $\Omegam\sim0.25, \Omega\Lambda\sim0.75$ - accelerating universe

Parameter estimation

  • A sample of $n$ SN measurements

    • Magnitude $m_i$

    • Typical magnitude error $\pm \sigma_{m,i}$

    • Redshift $z_i$ (error can be neglected)

    • Try to estimate $\left(\Omega{\mathrm{m}, 0}, \Omega{\Lambda, 0}, M\right)$

      • Fix $M$ (with sufficient precision) and estimate $\Omega$s

      • Fit simultaneously for all three

  • MLE

    • Likelihood function (assumption of Gaussian distribution)

      where

    • We are not interested in $M$ so we take integration over $M$ to get the 2-D likelihood function

    • We can generate $L$ in the phase space of $\left(\Omega{\mathrm{m}, 0}, \Omega{\Lambda, 0}\right)$ to get the estimator, and compare the allowed region (in the phase space) under certain confident levels with other tests (cluster, CMB, BAO, etc.) to narrow it down

    • $\Omega{\mathrm{m}, 0} \simeq 0.3, \Omega{\Lambda, 0} \simeq 0.7, \Omega_{\mathrm{k}, 0} \simeq 0$

Alternative Explanations

Astrophysical dimming

Evolution

  • The properties of SNIa events have evolved with cosmic time (different $z$)

    • SN at high $z$ - younger population

    • Lower metallicity (abundances of carbon/oxygen)

  • So far, no evidence

Intersellar dust

  • Supernovae in distant galaxies are more (or less) dimmed by dust than local supernovae

  • Normal dust not only dim but also redden the light, then by comparing the colors of local/distant SNe, we may assess the importance of the effect

  • No difference in reddening

Grey dust

  • Strange particles - significantly larger than the wavelength of light, scatter light of all wavelength similarly

Assessments

  • Push the measurement of SN Ia light curves to redshifts $z > 1$

    • Back in $z\sim1$, the $\Lambda$ term begins to become comparable to the matter term

    • For $z>1$, the $\Lambda$ term is negligible and SNe should be brighter again

Dark Energy

  • The energy density related to the cosmological constant (natural units)

    The fluid equation

  • We introduce constant $\omega_i$

    Then the fluid equation becomes

    where $n{i}=3\left(1+w{i}\right)$, then we have a useful property

  • Recall our discussions in Chapter 2

    • Dust (matter)

    • Radiation

    • Cosmological constant

    • Curvature

  • Hubble parameter

  • Deceleration parameter

    • Friedmann equation

      Then
  • Recall that

    • $q<0$ , acceleration of expansion - $n_i<2$, cosmological constant

      • $q>0$, slowing down of expansion - $n_i>2$, matter, radiation

      • $q=0$, linear expansion - $n_i=2$, empty universe

  • Most recent results of $\omega$

  • The evolution of $\omega$

M−m=2.5lg⁡(dL,0dL)2=5lg⁡dL,0dLM-m=2.5\lg\left(\frac{d_{L,0}}{d_L}\right)^2=5\lg\frac{d_{L,0}}{d_L}M−m=2.5lg(dL​dL,0​​)2=5lgdL​dL,0​​
m=M+5lg⁡dL(Mpc)+25m=M+5\lg d_L(\text{Mpc})+25m=M+5lgdL​(Mpc)+25
dL=(1+z)r1≈cH0[z+12(1−q0)z2+⋯ ]d_L=(1+z)r_1\approx\frac{c}{H_{0}}\left[z+\frac{1}{2}\left(1-q_{0}\right) z^{2}+\cdots\right]dL​=(1+z)r1​≈H0​c​[z+21​(1−q0​)z2+⋯]
m=M−5log⁡H0+5log⁡cz+⋯+25m=M-5 \log H_{0}+5 \log c z+\cdots+25m=M−5logH0​+5logcz+⋯+25
MB≈0.8(Δm15−1.1)−19.5M_{B} \approx 0.8\left(\Delta m_{15}-1.1\right)-19.5MB​≈0.8(Δm15​−1.1)−19.5
L(θ)∝exp⁡[−12∑i=1n(m(zi;θ)−miσm,i)2]L(\theta) \propto \exp \left[-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{m\left(z_{i} ; \theta\right)-m_{i}}{\sigma_{m, i}}\right)^{2}\right]L(θ)∝exp[−21​i=1∑n​(σm,i​m(zi​;θ)−mi​​)2]
θ=(Ωm,0,ΩΛ,0,M)\theta =\left(\Omega_{\mathrm{m}, 0}, \Omega_{\Lambda, 0}, M\right)θ=(Ωm,0​,ΩΛ,0​,M)
L(Ωm,0,ΩΛ,0)=∫dML(Ωm,0,ΩΛ,0,M)L\left(\Omega_{\mathrm{m}, 0}, \Omega_{\Lambda, 0}\right)=\int d M L\left(\Omega_{\mathrm{m}, 0}, \Omega_{\Lambda, 0}, M\right)L(Ωm,0​,ΩΛ,0​)=∫dML(Ωm,0​,ΩΛ,0​,M)
ρΛ≡Λ8πG=constant\rho_{\Lambda} \equiv \frac{\Lambda}{8 \pi G}=\mathrm{constant}ρΛ​≡8πGΛ​=constant
ρ˙Λ=−3(ρΛ+pΛ)a˙a=0⇒pΛ=−ρΛ\dot{\rho}_\Lambda=-3(\rho_\Lambda+p_\Lambda) \frac{\dot{a}}{a}=0\Rightarrow p_{\Lambda}=-\rho_{\Lambda}ρ˙​Λ​=−3(ρΛ​+pΛ​)aa˙​=0⇒pΛ​=−ρΛ​
pi=wiρip_i=w_{i} \rho_{i}pi​=wi​ρi​
ρ˙iρi=−3(1+wi)a˙a⇒ρi∝a−ni\frac{\dot{\rho}_{i}}{\rho_{i}}=-3\left(1+w_{i}\right) \frac{\dot{a}}{a}\Rightarrow \rho_{i} \propto a^{-n_{i}}ρi​ρ˙​i​​=−3(1+wi​)aa˙​⇒ρi​∝a−ni​
ΩiΩj∝a−(ni−nj)\frac{\Omega_{i}}{\Omega_{j}} \propto a^{-\left(n_{i}-n_{j}\right)}Ωj​Ωi​​∝a−(ni​−nj​)
ρm∝a−3⇒ωm=0\rho_{m} \propto a^{-3}\Rightarrow\omega_m=0ρm​∝a−3⇒ωm​=0
ρr∝a−4⇒ωr=13\rho_{r} \propto a^{-4}\Rightarrow\omega_r=\frac13ρr​∝a−4⇒ωr​=31​
ρΛ∝a0⇒ωΛ=−1\rho_\Lambda\propto a^0\Rightarrow \omega_\Lambda=-1ρΛ​∝a0⇒ωΛ​=−1
Ωk≡−k/(aH)2⇒ρk∝a−2⇒ωk=−13\Omega_{k} \equiv-k /(a H)^{2}\Rightarrow\rho_k\propto a^{-2}\Rightarrow \omega_k=-\frac13Ωk​≡−k/(aH)2⇒ρk​∝a−2⇒ωk​=−31​
H(a)=H0(∑iΩi,0a−ni)1/2H(a)=H_{0}\left(\sum_{i} \Omega_{i, 0} a^{-n_{i}}\right)^{1 / 2}H(a)=H0​(i∑​Ωi,0​a−ni​)1/2
q(t)=−1H2a¨aq(t)=-\frac{1}{H^{2}} \frac{\ddot{a}}{a}q(t)=−H21​aa¨​
a¨a=−4πG3(ρ+3p)\frac{\ddot a}{a}=-\frac{4\pi G}{3}(\rho+3p)aa¨​=−34πG​(ρ+3p)
q(t)=4πG3H2(ρ+3p)=12ρ+3pρc=12∑i(1+3ωi)Ωi=12∑i(ni−2)Ωi\begin{align*} q(t)&=\frac{4\pi G}{3H^2}(\rho+3p)=\frac12\frac{\rho+3p}{\rho_c}\\ &=\frac12\sum_{i}(1+3\omega_i)\Omega_i\\ &=\frac12\sum_{i}(n_i-2)\Omega_i \end{align*}q(t)​=3H24πG​(ρ+3p)=21​ρc​ρ+3p​=21​i∑​(1+3ωi​)Ωi​=21​i∑​(ni​−2)Ωi​​
ω=−1.007±0.081\omega=-1.007\pm0.081ω=−1.007±0.081
w(a)=w0+wa(1−a)w(a)=w_{0}+w_{a}(1-a)w(a)=w0​+wa​(1−a)
w0=−1.02±0.12, wa=0.07±0.6w_{0}=-1.02 \pm0.12,\ w_{{a}}=0.07 \pm 0.6w0​=−1.02±0.12, wa​=0.07±0.6