Chapter 6 Supernova cosmology

Application of the Luminosity Distance

Two main applications

  • The luminosity distance $d_L$ is a function of redshift $z$, and there are usually two applications

    • Given observed flux $F_{obs}$, if we know the redshift of a certain galaxy and universe parameters well, we can calculate the luminosity distance, and then the absolute luminosity - luminosity function

    • Given observed flux $F{obs}$, for some certain objects (Cepheids, SNe) we know the absolute luminosity and thus the luminosity distance - estimation of $\Omega_m,\Omega\Lambda$

Luminosity function

  • Describes the number of galaxies per unit volume with luminosity in the range $[L, L+d L]$

  • Schechter function

    Φ(L)dL=ϕ(LL)αeL/LdLL\Phi(L) d L=\phi^{*}\left(\frac{L}{L^{*}}\right)^{\alpha} e^{-L / L^{*}} \frac{d L}{L^{*}}
    • $\alpha<0$ - Faint end slope (diverges at the faint end - there must be a turn-over)

    • $L^*$ - Characteristic (fiducial) luminosity

    • $\phi^*$ - Overall normalisation

  • Luminosity-weighted luminosity function - $L\Phi(L)$

    • Converge if $\alpha>-2$

  • Well fitted by a Schechter function in the local universe

Distance modulus

Mm=2.5lg(dL,0dL)2=5lgdL,0dLM-m=2.5\lg\left(\frac{d_{L,0}}{d_L}\right)^2=5\lg\frac{d_{L,0}}{d_L}

For cosmology cases, 10 pc is too small and thus not practical, while 1 Mpc is usually used as $d_{L,0}$

m=M+5lgdL(Mpc)+25m=M+5\lg d_L(\text{Mpc})+25

For small $z$,

dL=(1+z)r1cH0[z+12(1q0)z2+]d_L=(1+z)r_1\approx\frac{c}{H_{0}}\left[z+\frac{1}{2}\left(1-q_{0}\right) z^{2}+\cdots\right]
m=M5logH0+5logcz++25m=M-5 \log H_{0}+5 \log c z+\cdots+25

Type Ia Supernovae

  • Nuclear explosions of carbon/oxygen white dwarfs in binary systems

  • The peak luminosity appears to be well-correlated with decay time

    The larger $L_{peak}$, the slower the decay

    MB0.8(Δm151.1)19.5M_{B} \approx 0.8\left(\Delta m_{15}-1.1\right)-19.5
    • $M_B$ - peak absolute luminosity in B-band

    • $\Delta m_{15}$ - the observed change in apparent magnitude 15 days after the peak

  • The maximum light of Type Ia Supernovae appears to be dimmer than that in an empty universe ($\Omegak=1$) and that in a matter dominate universe ($\Omega_m=0.25, \Omega\Lambda=0$)

  • $\Omegam\sim0.25, \Omega\Lambda\sim0.75$ - accelerating universe

Parameter estimation

  • A sample of $n$ SN measurements

    • Magnitude $m_i$

    • Typical magnitude error $\pm \sigma_{m,i}$

    • Redshift $z_i$ (error can be neglected)

    • Try to estimate $\left(\Omega{\mathrm{m}, 0}, \Omega{\Lambda, 0}, M\right)$

      • Fix $M$ (with sufficient precision) and estimate $\Omega$s

      • Fit simultaneously for all three

  • MLE

    • Likelihood function (assumption of Gaussian distribution)

      L(θ)exp[12i=1n(m(zi;θ)miσm,i)2]L(\theta) \propto \exp \left[-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{m\left(z_{i} ; \theta\right)-m_{i}}{\sigma_{m, i}}\right)^{2}\right]

      where

      θ=(Ωm,0,ΩΛ,0,M)\theta =\left(\Omega_{\mathrm{m}, 0}, \Omega_{\Lambda, 0}, M\right)
    • We are not interested in $M$ so we take integration over $M$ to get the 2-D likelihood function

      L(Ωm,0,ΩΛ,0)=dML(Ωm,0,ΩΛ,0,M)L\left(\Omega_{\mathrm{m}, 0}, \Omega_{\Lambda, 0}\right)=\int d M L\left(\Omega_{\mathrm{m}, 0}, \Omega_{\Lambda, 0}, M\right)
    • We can generate $L$ in the phase space of $\left(\Omega{\mathrm{m}, 0}, \Omega{\Lambda, 0}\right)$ to get the estimator, and compare the allowed region (in the phase space) under certain confident levels with other tests (cluster, CMB, BAO, etc.) to narrow it down

    • $\Omega{\mathrm{m}, 0} \simeq 0.3, \Omega{\Lambda, 0} \simeq 0.7, \Omega_{\mathrm{k}, 0} \simeq 0$

Alternative Explanations

Astrophysical dimming

Evolution

  • The properties of SNIa events have evolved with cosmic time (different $z$)

    • SN at high $z$ - younger population

    • Lower metallicity (abundances of carbon/oxygen)

  • So far, no evidence

Intersellar dust

  • Supernovae in distant galaxies are more (or less) dimmed by dust than local supernovae

  • Normal dust not only dim but also redden the light, then by comparing the colors of local/distant SNe, we may assess the importance of the effect

  • No difference in reddening

Grey dust

  • Strange particles - significantly larger than the wavelength of light, scatter light of all wavelength similarly

Assessments

  • Push the measurement of SN Ia light curves to redshifts $z > 1$

    • Back in $z\sim1$, the $\Lambda$ term begins to become comparable to the matter term

    • For $z>1$, the $\Lambda$ term is negligible and SNe should be brighter again

Dark Energy

  • The energy density related to the cosmological constant (natural units)

    ρΛΛ8πG=constant\rho_{\Lambda} \equiv \frac{\Lambda}{8 \pi G}=\mathrm{constant}

    The fluid equation

    ρ˙Λ=3(ρΛ+pΛ)a˙a=0pΛ=ρΛ\dot{\rho}_\Lambda=-3(\rho_\Lambda+p_\Lambda) \frac{\dot{a}}{a}=0\Rightarrow p_{\Lambda}=-\rho_{\Lambda}
  • We introduce constant $\omega_i$

    pi=wiρip_i=w_{i} \rho_{i}

    Then the fluid equation becomes

    ρ˙iρi=3(1+wi)a˙aρiani\frac{\dot{\rho}_{i}}{\rho_{i}}=-3\left(1+w_{i}\right) \frac{\dot{a}}{a}\Rightarrow \rho_{i} \propto a^{-n_{i}}

    where $n{i}=3\left(1+w{i}\right)$, then we have a useful property

    ΩiΩja(ninj)\frac{\Omega_{i}}{\Omega_{j}} \propto a^{-\left(n_{i}-n_{j}\right)}
  • Recall our discussions in Chapter 2

    • Dust (matter)

      ρma3ωm=0\rho_{m} \propto a^{-3}\Rightarrow\omega_m=0
    • Radiation

      ρra4ωr=13\rho_{r} \propto a^{-4}\Rightarrow\omega_r=\frac13
    • Cosmological constant

      ρΛa0ωΛ=1\rho_\Lambda\propto a^0\Rightarrow \omega_\Lambda=-1
    • Curvature

      Ωkk/(aH)2ρka2ωk=13\Omega_{k} \equiv-k /(a H)^{2}\Rightarrow\rho_k\propto a^{-2}\Rightarrow \omega_k=-\frac13
  • Hubble parameter

    H(a)=H0(iΩi,0ani)1/2H(a)=H_{0}\left(\sum_{i} \Omega_{i, 0} a^{-n_{i}}\right)^{1 / 2}
  • Deceleration parameter

    q(t)=1H2a¨aq(t)=-\frac{1}{H^{2}} \frac{\ddot{a}}{a}
    • Friedmann equation

      a¨a=4πG3(ρ+3p)\frac{\ddot a}{a}=-\frac{4\pi G}{3}(\rho+3p)
      Then
      q(t)=4πG3H2(ρ+3p)=12ρ+3pρc=12i(1+3ωi)Ωi=12i(ni2)Ωi\begin{align*} q(t)&=\frac{4\pi G}{3H^2}(\rho+3p)=\frac12\frac{\rho+3p}{\rho_c}\\ &=\frac12\sum_{i}(1+3\omega_i)\Omega_i\\ &=\frac12\sum_{i}(n_i-2)\Omega_i \end{align*}
  • Recall that

    • $q<0$ , acceleration of expansion - $n_i<2$, cosmological constant

      • $q>0$, slowing down of expansion - $n_i>2$, matter, radiation

      • $q=0$, linear expansion - $n_i=2$, empty universe

  • Most recent results of $\omega$

    ω=1.007±0.081\omega=-1.007\pm0.081
  • The evolution of $\omega$

    w(a)=w0+wa(1a)w(a)=w_{0}+w_{a}(1-a)
    w0=1.02±0.12, wa=0.07±0.6w_{0}=-1.02 \pm0.12,\ w_{{a}}=0.07 \pm 0.6

Last updated