Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Basic Considerations
  • Two-Body Nuclear Reaction Processes
  • Reaction Rate
  • Tunneling Effect
  • Cross Section
  • Reaction Rate
  • Energy Generation Rate
  • Nuclear Burning Mechanisms
  • pp-chain (in the Sun)
  • CNO Cycle ($M>2M_\odot$)
  1. 恒星结构与演化

Chapter 9. Nuclear Reactions

PreviousChapter 6. ConvectionNextChapter 10 Polytrope

Last updated 4 years ago

Basic Considerations

Normally in a sun-like star, $\ce{4^1H -> ^4He}$. Here in nuclear physics, people use atomic mass unit (amu).

1\text{ amu}=\frac1{12}m\left(\ce{^{12}C}\right)

$m\left(\ce{^{1}H}\right)\simeq1.0081$ amu, $m\left(\ce{^{4}He}\right)\simeq4.0039$ amu, so the mass deficiency $\Delta m$ in this reaction is $0.0285$ amu. It will be transported into energy

ΔE=Δmc2≃4.3×10−5 erg≃27 MeV∼1010 K\Delta E=\Delta mc^2\simeq4.3\times10^{-5}\text{ erg}\simeq 27\text{ MeV}\sim10^{10}\text{ K}ΔE=Δmc2≃4.3×10−5 erg≃27 MeV∼1010 K
  • The rest mass (energy) for important particles

    • Electron: $\sim 0.5$ MeV

    • Pion: $\sim10^2$ MeV

    • Proton: $\sim1$ GeV

Generally speaking, the nuclear binding energy $E_B$ of a nucleus is

EB=[(A−Z)mn+Zmp−Mnuc]c2E_B=\left[(A-Z)m_\text{n}+Zm_\text{p}-M_\text{nuc}\right]c^2EB​=[(A−Z)mn​+Zmp​−Mnuc​]c2

Where $Z$ is the proton number, $A$ is the atomic number, $m\text{u}$, $m\text{p}$, and $M_\text{nuc}$ are neutron mass, proton mass, and nuclear mass, respectively.

Let us define the average binding energy per nucleon

The $\epsilon_B-A$ curve peaks at $\ce{^{56}Fe}$, where $\epsilon_B=8.5$ MeV. For $A<56$, nuclear reactions gain energy. Fusion for heavier elements requires energy.

Note

  • It is interesting that $\ce{^4He}$ has a $\epsilon_B=6.6$ MeV, far above the smoothed fitting function. From $\ce{^1H}$ to $\ce{^{56}Fe}$, $\epsilon_B=8.5$ MeV, but $6.6$ MeV is already gained in the generation of $\ce{^4He}$.

  • Nuclear fusion in stats produce heavy elements up to $\ce{^{56}Fe}$. Elements with $A>56$ are produced in violent explosions such as SNe, compact stars mergers, etc.

Two-Body Nuclear Reaction Processes

Reaction Rate

The number of reaction between species $i$ and $j$ per unit time in unit volume can be approximated as

where $n_i,n_j$ correspond to number desities, $\sigma$ denotes the cross section, and $v$ is the relative velocity. If we assume all nuclei are in thermal equilibrium so that the velocity magnitude $v$ obeys a Maxwell-Boltzmann distribution. The density function is

If we define $E=\frac12mv^2$, we have

where $m=m_im_j/(m_i+m_j)$ is the reduced mass. So statistically we can calculate the average $\sigma v$

Since nuclei have positive charge, we need to consider the long-distance, repulsive force - Columb force. The Columb barrier is

On the other hand, nuclear matters interact with short-distance, strong attractive force when

In a classical scenario, when the kinetic energy of partcles reaches $E_\text{max}=V_C(r_0)\sim Z_1Z_2$ MeV, they are able to overcome the Columb barrier. But in this way crtical temperature must be over $\sim10^{10}$ K, far above the central temeperature of sun-like stars ($\sim10^{10}$ K).

Tunneling Effect

Thanks to the quantum physics, we know that as long as the size of the potential well is finite, there can be tunneling effects against the well. In the stellar core, $kT\text{c}\ll E\text{max}$. Even so, the quantum tunneling allows penetration under a small, yet finite, probability, which is given by

Here $r_c$ is defined so that $V(r_c)=E$. Here $\eta$ is given by

We can understand this integration result in an alternative way. Considering $V_C(\lambda)$, where $\lambda$ is the de Broglie length,

Then

Thus $\eta$ corresponds to the ratio between the Columb potential and the particle specific energy,

Increasing $E$ and decreasing $Z_1Z_2$ (lighter particles) help promote the tunneling probability.

Cross Section

The cross section is given by

where $\lambda$ is the de Broglie length, $P(E)$ is the tunneling probability, and $\xi(E)$ is the resonance. The form of $\xi(E)$ is rather complicated (sort of a Lorentz profile), but when $E$ is far away from any resonance, $\xi\to1$. Anyway, we define

$S(E)$ is known as the astrophysical S-factor. It is measured by nuclear physicists. Luckily, it depends only weakly on $E$. So we can treat it as a constant of $E$.

Reaction Rate

Finally we go back to the integral

The integrand $f(E)$ vanishes either at large or small $E$, and only significantly contributes to the integration around its maximum.

Define $E_0$, so that

We can solve $E_0$

Around $E_0$, we can expand $f(E)$ into Tyler's series

Thus the integration is approximately

where

The main contribution to $\langle\sigma u\rangle$ comes from a range close to $\xi=0$, so that no large errors are introduces when extending the range of integration to 􏰠$-\infty$, the integral over the Gaussian becoming 􏰕$\sqrt\pi$.

Therefore, one can obtain

Recall that

Thus for the solar case, $\tau\sim20$, and

Energy Generation Rate

The energy generation rate (per unit mass) between species $i$ and $j$ is simply

where $Q_{ij}$ is the binding energy to release.

Define

The temperature dependence is really strong!

For heavier elements, since $\tau\propto\left(Z_1^2Z_2^2A\right)^{1/3}$, $\nu$ can be extremely high.

Nuclear Burning Mechanisms

pp-chain (in the Sun)

pp-chain I

  • $\ce{^1H + ^1H -> ^2H + e+ +\nu_e}$

    This reaction is slow. Once there is neutrino generation, weak interaction is involved, and the efficiency is much lower than other reactions.

    Notes

    In Big Bang nucleosynthesis (BBN), it causes the deutron ($\ce{^2H}$) bottleneck. All other reactions wait for the generation of $\ce{^2H}$.

  • $\ce{^2H + ^1H -> ^3He + \gamma}$

  • $\ce{^3He + ^3He -> ^4He + 2^1H}$

As a result, a positron and a gamma-photon are ejected to heat the gas up. The neutrino just escapes without any interaction.

pp-chain II and pp-chain III are rather complicated, and to form $\ce{^4He}$. $\ce{Li, Be, B}$ are also involved. The overall energy generation rate is

where $X$ is the abundance of hydrogen.

CNO Cycle ($M>2M_\odot$)

The CNO cycle is composed of CNO-I (CN cycle) and CNO-II (CNO cycle). The overall energy generation rate is

where $X_\text{CNO}$ is the sum of carbon, nitrogen, and oxygen abundance.

ϵB≡EBA\epsilon_B\equiv\frac{E_B}AϵB​≡AEB​​
Rij=ninjσv [1/s/cm3]R_{ij}=n_in_j\sigma v\ [\text{1/s/cm}^3]Rij​=ni​nj​σv [1/s/cm3]
f(v)dv=4πv2(m2πkBT)3/2exp⁡(−mv22kBT)dvf(v)\text dv=4\pi v^2\left(\frac{m}{2\pi k_BT}\right)^{3/2}\exp\left(-\frac{mv^2}{2k_BT}\right)\text dvf(v)dv=4πv2(2πkB​Tm​)3/2exp(−2kB​Tmv2​)dv
f(E)dE=2πE1/2(kBT)−3/2exp⁡[−EkBT]dEf(E)\text dE=\frac2{\sqrt{\pi}}E^{1/2}\left(k_BT\right)^{-3/2}\exp\left[-\frac E{k_BT}\right]\text dEf(E)dE=π​2​E1/2(kB​T)−3/2exp[−kB​TE​]dE
⟨σu⟩=∫0∞σvf(v)dv=∫0∞σ(E)⋅(2Em)1/2⋅f(E)dE=(8πm)1/2(kBT)−3/2∫0∞σ(E)⋅Eexp⁡[−EkBT]dE\begin{align*} \left\langle\sigma u\right\rangle&=\int_0^\infty\sigma vf(v)\text dv\\ &=\int_0^\infty\sigma(E)\cdot\left(\frac{2E}m\right)^{1/2}\cdot f(E)\text dE\\ &=\left(\frac{8}{\pi m}\right)^{1/2}\left(k_BT\right)^{-3/2}\int_0^\infty \sigma(E)\cdot E\exp\left[-\frac E{k_BT}\right]\text dE \end{align*}⟨σu⟩​=∫0∞​σvf(v)dv=∫0∞​σ(E)⋅(m2E​)1/2⋅f(E)dE=(πm8​)1/2(kB​T)−3/2∫0∞​σ(E)⋅Eexp[−kB​TE​]dE​
VC(r)=Z1Z2e2rV_C(r)=\frac{Z_1Z_2 e^2}{r}VC​(r)=rZ1​Z2​e2​
r<r0≃1.44×10−13A1/3 cm∼fmr<r_0\simeq1.44\times10^{-13} A^{1/3}\text{ cm}\sim\text{fm}r<r0​≃1.44×10−13A1/3 cm∼fm
P(E)∼exp⁡[−∫r0rc2m[V(r)−E]ℏdr]≡exp⁡(−2πη)P(E)\sim\exp\left[-\int_{r_0}^{r_c}\frac{\sqrt{2m[V(r)-E]}}{\hbar}\text dr\right]\equiv\exp(-2\pi\eta)P(E)∼exp[−∫r0​rc​​ℏ2m[V(r)−E]​​dr]≡exp(−2πη)
η=(m2)1/2Z1Z2e2ℏE1/2\eta=\left(\frac m2\right)^{1/2}\frac{Z_1Z_2 e^2}{\hbar E^{1/2}}η=(2m​)1/2ℏE1/2Z1​Z2​e2​
λ≡hp\lambda\equiv\frac hpλ≡ph​
VC(λ)E=Z1Z2e2hpE=Z1Z2e2h2mE=ηπ\frac{V_C(\lambda)}{E}=\frac{Z_1Z_2 e^2}{h}\frac pE=\frac{Z_1Z_2 e^2}{h}\sqrt{\frac {2m}E}=\frac\eta\piEVC​(λ)​=hZ1​Z2​e2​Ep​=hZ1​Z2​e2​E2m​​=πη​
P(E)∼exp⁡(−2π2VC(λ)E)P(E)\sim\exp\left(-2\pi^2\frac{V_C(\lambda)}{E}\right)P(E)∼exp(−2π2EVC​(λ)​)
σ(E)≃πλ2P(E)ξ(E)\sigma(E)\simeq\pi\lambda^2P(E)\xi(E)σ(E)≃πλ2P(E)ξ(E)
σ(E)≃S(E)exp⁡[−b/E]E\sigma(E)\simeq S(E)\frac{\exp\left[{-b/\sqrt{E}}\right]}{E}σ(E)≃S(E)Eexp[−b/E​]​
⟨σu⟩=(8πm)1/2(kBT)−3/2∫0∞σ(E)⋅Eexp⁡[−EkBT]dE≃(8πm)1/2(kBT)−3/2S0∫0∞exp⁡[−EkBT−bE]dE\begin{align*} \left\langle\sigma u\right\rangle &=\left(\frac{8}{\pi m}\right)^{1/2}\left(k_BT\right)^{-3/2}\int_0^\infty \sigma(E)\cdot E\exp\left[-\frac E{k_BT}\right]\text dE\\ &\simeq\left(\frac{8}{\pi m}\right)^{1/2}\left(k_BT\right)^{-3/2}S_0\int_0^\infty \exp\left[-\frac E{k_BT}-\frac{b}{\sqrt{E}}\right]\text dE\\ \end{align*}⟨σu⟩​=(πm8​)1/2(kB​T)−3/2∫0∞​σ(E)⋅Eexp[−kB​TE​]dE≃(πm8​)1/2(kB​T)−3/2S0​∫0∞​exp[−kB​TE​−E​b​]dE​
f′(E)=ddE[−EkBT−bE]=0f'(E)=\frac{\text d}{\text dE} \left[-\frac E{k_BT}-\frac{b}{\sqrt{E}}\right]=0f′(E)=dEd​[−kB​TE​−E​b​]=0
E0=(b2kBT)2/3=[(m2)1/2πZiZke2kBTℏ]2/3\begin{align*} E_0=\left(\frac b2k_BT\right)^{2/3}=\left[\left(\frac{m}{2}\right)^{1 / 2} \pi \frac{Z_{i} Z_{k} e^{2} k_B T}{\hbar}\right]^{2/3} \end{align*}E0​=(2b​kB​T)2/3=[(2m​)1/2πℏZi​Zk​e2kB​T​]2/3​
f(E)=f(E0)+12f′′(E0)(E−E0)2+O(E3)=−3E0kBT−3E08E0−3/2b(EE0−1)2+O(E3)=−3E0kBT−3E04kBT(EE0−1)2+O(E3)≡−τ−τ4(EE0−1)2+O(E3)\begin{align*} f(E)&=f(E_0)+\frac12f''(E_0)(E-E_0)^2+\mathcal O(E^3)\\ &=-\frac{3E_0}{k_BT}-\frac{3E_0}8E_0^{-3/2}b\left(\frac E{E_0}-1\right)^2+\mathcal O(E^3)\\ &=-\frac{3E_0}{k_BT}-\frac{3E_0}{4k_BT}\left(\frac E{E_0}-1\right)^2+\mathcal O(E^3)\\ &\equiv-\tau-\frac\tau4\left(\frac E{E_0}-1\right)^2+\mathcal O(E^3) \end{align*}f(E)​=f(E0​)+21​f′′(E0​)(E−E0​)2+O(E3)=−kB​T3E0​​−83E0​​E0−3/2​b(E0​E​−1)2+O(E3)=−kB​T3E0​​−4kB​T3E0​​(E0​E​−1)2+O(E3)≡−τ−4τ​(E0​E​−1)2+O(E3)​
⟨σu⟩≃(8πm)1/2(kBT)−3/2S0∫0∞exp⁡[−τ−τ4(EE0−1)2]dE≃(8πm)1/2(kBT)−3/2S0e−τ∫0∞exp⁡[−τ4(EE0−1)2]dE≡(8πm)1/2(kBT)−3/2S0⋅23kBT⋅τ1/2e−τ∫−τ/2∞e−ξ2dξ\begin{align*} \left\langle\sigma u\right\rangle &\simeq\left(\frac{8}{\pi m}\right)^{1/2}\left(k_BT\right)^{-3/2}S_0\int_0^\infty\exp\left[-\tau-\frac\tau4\left(\frac E{E_0}-1\right)^2\right]\text dE\\ &\simeq\left(\frac{8}{\pi m}\right)^{1/2}\left(k_BT\right)^{-3/2}S_0\text e^{-\tau}\int_0^\infty\exp\left[-\frac\tau4\left(\frac E{E_0}-1\right)^2\right]\text dE\\ &\equiv \left(\frac{8}{\pi m}\right)^{1/2}\left(k_BT\right)^{-3/2}S_0\cdot\frac{2}{3} k_B T\cdot \tau^{1 / 2} \mathrm{e}^{-\tau} \int_{-\sqrt{\tau }/2}^{\infty} \mathrm{e}^{-\xi^{2}} d \xi \end{align*}⟨σu⟩​≃(πm8​)1/2(kB​T)−3/2S0​∫0∞​exp[−τ−4τ​(E0​E​−1)2]dE≃(πm8​)1/2(kB​T)−3/2S0​e−τ∫0∞​exp[−4τ​(E0​E​−1)2]dE≡(πm8​)1/2(kB​T)−3/2S0​⋅32​kB​T⋅τ1/2e−τ∫−τ​/2∞​e−ξ2dξ​
ξ≡τ2(EE0−1)\xi\equiv\frac{\sqrt\tau}2\left(\frac E{E_0}-1\right)ξ≡2τ​​(E0​E​−1)
⟨σu⟩=43(2mkBT)1/2S0τ1/2e−τ\left\langle\sigma u\right\rangle=\frac{4}{3} \left(\frac{2}{ mk_BT}\right)^{1/2}S_0 \tau^{1 / 2} \mathrm{e}^{-\tau}⟨σu⟩=34​(mkB​T2​)1/2S0​τ1/2e−τ
τ=3E0kBT≃20(Z12Z22A)1/3T7−1/3∝T−1/3\tau=\frac{3E_0}{k_BT}\simeq20\left(Z_1^2Z_2^2A\right)^{1/3}T_7^{-1/3}\propto T^{-1/3}τ=kB​T3E0​​≃20(Z12​Z22​A)1/3T7−1/3​∝T−1/3
⇒⟨σu⟩∝T−2/3exp⁡(−cT−1/3)\Rightarrow\left\langle\sigma u\right\rangle\propto T^{-2/3}\exp\left(-cT^{-1/3}\right)⇒⟨σu⟩∝T−2/3exp(−cT−1/3)
∂ln⁡⟨σu⟩∂ln⁡T=τ3−23∼6−7\frac{\partial\ln\langle\sigma u\rangle}{\partial\ln T}=\frac\tau3-\frac23\sim6-7∂lnT∂ln⟨σu⟩​=3τ​−32​∼6−7
εnuc=QijRijρ∝ρ⟨σu⟩\varepsilon_\text{nuc}=\frac{Q_{ij}R_{ij}}{\rho}\propto\rho\langle\sigma u\rangleεnuc​=ρQij​Rij​​∝ρ⟨σu⟩
ν≡∂ln⁡εnuc∂ln⁡T=τ3−23∼6−7\nu\equiv\frac{\partial\ln\varepsilon_\text{nuc}}{\partial\ln T}=\frac\tau3-\frac23\sim6-7ν≡∂lnT∂lnεnuc​​=3τ​−32​∼6−7
εpp=4.4×105ρX2T7−2/3exp⁡(−15.7T71/3) erg/s/g\varepsilon_\text{pp}=4.4\times10^5\rho X^2T^{-2/3}_7\exp\left(-\frac{15.7}{T^{1/3}_7}\right)\text{ erg/s/g}εpp​=4.4×105ρX2T7−2/3​exp(−T71/3​15.7​) erg/s/g
εCNO=1.7×1027ρXXCNOT7−2/3exp⁡(−70.5T71/3) erg/s/g\varepsilon_\text{CNO}=1.7\times10^{27}\rho XX_\text{CNO}T^{-2/3}_7\exp\left(-\frac{70.5}{T^{1/3}_7}\right)\text{ erg/s/g}εCNO​=1.7×1027ρXXCNO​T7−2/3​exp(−T71/3​70.5​) erg/s/g