Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Basics
  • Isothermal Solution
  • Accretion Solution
  • Mass Accretion Rate
  • Accretion Flows
  • Radiative Luminosity
  • Eddington Accretion Rate
  1. 天体物理吸积过程

Chapter 4. Spherically Symmetric Flow

Basics

Let us consider systems in steady state (Parker's wind & Bondi accretion)

The EoC requires that $\dot M=4\pi r^2\rho u$ is a constant, which gives out the relation

1ρdρdr+2r+1vdvdr=0\frac1\rho\frac{\text d\rho}{\text dr}+\frac2r+\frac1v\frac{\text dv}{\text dr}=0ρ1​drdρ​+r2​+v1​drdv​=0

The EoM gives

vdvdr=−1ρdPdr−GM∗r2=−cs2ρdρdr−GM∗r2\begin{align*} v\frac{\text dv}{\text dr}&=-\frac1\rho\frac{\text dP}{\text dr}-\frac{GM_*}{r^2}\\ &=-\frac{c_s^2}\rho\frac{\text d\rho}{\text dr}-\frac{GM_*}{r^2} \end{align*}vdrdv​​=−ρ1​drdP​−r2GM∗​​=−ρcs2​​drdρ​−r2GM∗​​​

Combine EoC and EoM to eliminate the density gradient $\text d\rho/\text dr$, we find

vdvdr=2cs2r+cs2vdvdr−GM∗r2v\frac{\text dv}{\text dr}=\frac{2c_s^2}r+\frac{c_s^2}v\frac{\text dv}{\text dr}-\frac{GM_*}{r^2}vdrdv​=r2cs2​​+vcs2​​drdv​−r2GM∗​​
⇒12(1−cs2u2)dv2dr=−GM∗r2(1−2cs2rGM∗)\Rightarrow \frac12\left(1-\frac{c_s^2}{u^2}\right)\frac{\text dv^2}{\text dr}=-\frac{GM_*}{r^2}\left(1-\frac{2c_s^2r}{GM_*}\right)⇒21​(1−u2cs2​​)drdv2​=−r2GM∗​​(1−GM∗​2cs2​r​)

To solve this ODE, we apply the so-called trans-sonic condition, that is, $v=cs$ at $r=r\text c\equiv GM_*/2c_s^2$.

Isothermal Solution

In isothermal flow, $c_s$ is a constant, the solution is thus

M2−ln⁡M2=4ln⁡ξ+4ξ−3\mathcal M^2-\ln \mathcal M^2=4\ln\xi+\frac4\xi-3M2−lnM2=4lnξ+ξ4​−3

where $\mathcal M$ is the Mach number, and $\xi\equiv r/r_\text c$. The solutions are shown as below.

  • I & II - unphysical

  • III - supersonic

  • IV - subsonic

  • V - wind solution (Parker's wind)

  • The other trans-sonic solution - accretion solution (Bondi accretion)

Accretion Solution

If the flow is not isothermal, we assume a polytropic equation of state $P=K\rho^\gamma$. Bernoulli's theorem for steady flow ensures that $\frac12u^2+h+\phi$ is a constant along each streamline, where $h$ is the specific enthalpy

h(p)≡∫dpρ(p)=Kγ−1γργ−1=cs2γ−1h(p)\equiv\int\frac{\text dp}{\rho(p)}=\frac K{\gamma-1}\gamma\rho^{\gamma-1}=\frac{c_s^2}{\gamma-1}h(p)≡∫ρ(p)dp​=γ−1K​γργ−1=γ−1cs2​​

and $\phi$ is the gravitational potential. Thus at radius $r$,

12v2+cs2γ−1−GM∗r=c∞2γ−1\frac12v^2+\frac{c_s^2}{\gamma-1}-\frac{GM_*}{r}=\frac{c_\infty^2}{\gamma-1}21​v2+γ−1cs2​​−rGM∗​​=γ−1c∞2​​

where $c_\infty$ is the adiabatic sound speed at infinity. Here we have applied the infinite boundary condition, that is, $v\to0$ as $r\to\infty$.

Setting $v=c_s$ at

r=rc≡GM∗2cs,c,cs,c≡cs(rc)r=r_c\equiv\frac{GM_*}{2c_{s,\text c}},\quad c_{s,\text c}\equiv c_s(r_\text c)r=rc​≡2cs,c​GM∗​​,cs,c​≡cs​(rc​)

as we are only interested in the trans-sonic solution. Consequently,

rc=5−3γ2GM∗2c∞2cs,c=(25−3γ)1/2c∞ρc=(25−3γ)1/(γ−1)ρ∞\begin{align*} r_\text c&=\frac{5-3\gamma}2\frac{GM_*}{2c_\infty^2}\\ c_{s,\text c}&=\left(\frac2{5-3\gamma}\right)^{1/2}c_\infty\\ \rho_\text c&=\left(\frac2{5-3\gamma}\right)^{1/(\gamma-1)}\rho_\infty \end{align*}rc​cs,c​ρc​​=25−3γ​2c∞2​GM∗​​=(5−3γ2​)1/2c∞​=(5−3γ2​)1/(γ−1)ρ∞​​

$\rho_\text c$ is calculated from the EoS.

Obviously, for $\gamma\ge5/3$, $r_\text c\le0$, so there is no trans-sonic solution for adiabatic (no radiative cooling) EoS. $\gamma=5/3$ is critical for spherical, point-mass accretion.

Mass Accretion Rate

M˙B=4πρr2v=4πρcrc2vs,c=4π(25−3γ)5−3γ2(γ−1)(GM∗2c∞2)2ρ∞c∞(∝ρM∗2T−3/2)≡4πq(γ)RB2ρ∞c∞\begin{align*} \dot M_B&=4\pi\rho r^2v=4\pi\rho_\text c r_\text c^2v_{s,\text c}\\ &=4\pi\left(\frac2{5-3\gamma}\right)^{\frac{5-3\gamma}{2(\gamma-1)}}\left(\frac{GM_*}{2c_\infty^2}\right)^2\rho_\infty c_\infty\quad\left(\propto \rho M_*^2T^{-3/2}\right)\\ &\equiv4\pi q(\gamma)R_B^2\rho_\infty c_\infty \end{align*}M˙B​​=4πρr2v=4πρc​rc2​vs,c​=4π(5−3γ2​)2(γ−1)5−3γ​(2c∞2​GM∗​​)2ρ∞​c∞​(∝ρM∗2​T−3/2)≡4πq(γ)RB2​ρ∞​c∞​​

where we define

q(γ)≡14(25−3γ)5−3γ2(γ−1)q(\gamma)\equiv\frac14\left(\frac2{5-3\gamma}\right)^{\frac{5-3\gamma}{2(\gamma-1)}}q(γ)≡41​(5−3γ2​)2(γ−1)5−3γ​

and the Bondi radius

RB≡GM∗c∞2R_B\equiv\frac{GM_*}{c_\infty^2}RB​≡c∞2​GM∗​​
  • For diffusive ISM accretion onto a sun-like object

    ρ∞∼10−24 g/cm3,T∼104 K,γ∼1.4\rho_\infty\sim10^{-24}\text{ g/cm}^3,\quad T\sim10^4\text{ K},\quad \gamma\sim1.4ρ∞​∼10−24 g/cm3,T∼104 K,γ∼1.4
    ⇒M˙B∼10−15(M∗M⊙)2M⊙/yr\Rightarrow \dot M_B\sim10^{-15}\left(\frac{M_*}{M_\odot}\right)^2M_\odot/\text{yr}⇒M˙B​∼10−15(M⊙​M∗​​)2M⊙​/yr

    This rate is extremely small. Even if we neglect the accretion feedback, a sun-like object can only accrete $\sim10^{-5}M_\odot$ in Hubble time.

  • For denser and colder molecular cloud

    ρ∞∼10−20 g/cm3,T∼10 K,γ∼1.4\rho_\infty\sim10^{-20}\text{ g/cm}^3,\quad T\sim10\text{ K},\quad \gamma\sim1.4ρ∞​∼10−20 g/cm3,T∼10 K,γ∼1.4
    ⇒M˙B∼3×10−7(M∗M⊙)2M⊙/yr\Rightarrow \dot M_B\sim3\times10^{-7}\left(\frac{M_*}{M_\odot}\right)^2M_\odot/\text{yr}⇒M˙B​∼3×10−7(M⊙​M∗​​)2M⊙​/yr

    In this way, the accretion timescale is quite interesting, as it only takes several million years for a sun-like object to double its mass. For a SMBH $\sim10^6M_\odot$, the timescale to reach double mass is only 0.3 yr.

We note that in reality, BH feedback suppresses the accretion somehow. Thus, $\dot M_B$ is the upper limit of the actual accretion rate. In this case,

dM∗dt=AM∗2\frac{\text dM_*}{\text dt}=AM_*^2dtdM∗​​=AM∗2​
⇒1M∗−1M0=−A(t−t0)⇒M∗=M01−AM0(t−t0)\Rightarrow\frac1{M_*}-\frac1{M_0}=-A(t-t_0)\Rightarrow M_*=\frac{M_0}{1-AM_0(t-t_0)}⇒M∗​1​−M0​1​=−A(t−t0​)⇒M∗​=1−AM0​(t−t0​)M0​​

The growth of $M*$ is so rapid that before $t$ goes to infinity, $M$ diverges within *Bondi timescale $t_B$

tB≡1AM0t_B\equiv\frac1{AM_0}tB​≡AM0​1​

This is known as the super-exponential growth.

Accretion Flows

Radiative Luminosity

The luminosity caused by radiation can be estimated as

Lacc∼dEgdt∼ddt(GM2R)∼GMM˙R−GM2R2R˙L_\text{acc}\sim\frac{\text dE_\text{g}}{\text dt}\sim\frac{\text d}{\text dt}\left(\frac{GM^2}{R}\right)\sim\frac{GM\dot M}{R}-\frac{GM^2}{R^2}\dot RLacc​∼dtdEg​​∼dtd​(RGM2​)∼RGMM˙​−R2GM2​R˙

The second term is important only when there is significant orbital shrink in the system, such as binary spiral-in or stellar contraction. For steady accretion onto a point mass, it is negligable, so we can focus on the first term only.

  • Neutron star

    M∗∼M⊙,R∗∼10 km⇒Lacc∼GM∗R∗M˙∼1038(M˙10−8M⊙/yr) erg/sM_*\sim M_\odot,\quad R_*\sim10\text{ km}\Rightarrow L_\text{acc}\sim\frac{GM_*}{R_*}\dot M\sim10^{38}\left(\frac{\dot M}{10^{-8}M_\odot/\text{yr}}\right)\text{ erg/s}M∗​∼M⊙​,R∗​∼10 km⇒Lacc​∼R∗​GM∗​​M˙∼1038(10−8M⊙​/yrM˙​) erg/s
  • Black hole

    Lacc∼GMRISCOM˙L_\text{acc}\sim\frac{GM}{R_\text{ISCO}}\dot MLacc​∼RISCO​GM​M˙

    where $R_\text{ISCO}$ is the innermost stable circular orbit. For a Schwarzschild black hole,

    RISCO=3RSch=6GMc2R_\text{ISCO}=3R_{Sch}=\frac{6GM}{c^2}RISCO​=3RSch​=c26GM​

    so the accretion rate is approximately

    Lacc∼16M˙c2L_\text{acc}\sim\frac16\dot Mc^2Lacc​∼61​M˙c2

We define the radiation efficiency $\eta$ so that

Lacc≡ηM˙c2L_\text{acc}\equiv\eta\dot Mc^2Lacc​≡ηM˙c2

$\eta$ can be of the order $10^{-1}$ for black holes, but is negligible for less compact objects, such as normal stars.

Eddington Accretion Rate

For any astrophysical system, for materials to accrete, the gravity should exceed the radiation force, that is

GMr2≥L4πr2ρκc\frac{GM}{r^2}\ge\frac{L}{4\pi r^2}\frac{\rho\kappa}{c}r2GM​≥4πr2L​cρκ​

Immediately, we notice that $L$ cannot exceed a critical luminosity $L_{Edd}$,

L≤LEdd≡4πcGMκL\le L_{Edd}\equiv\frac{4\pi cGM}{\kappa}L≤LEdd​≡κ4πcGM​

$L_{Edd}$ is the famous Eddington luminosity. Assuming $\kappa$ is solely given by the electron scattering, the typical Eddington luminosity is

LEdd∼1.3×1038(MM⊙) erg/sL_{Edd}\sim1.3\times10^{38}\left(\frac{M}{M_\odot}\right)\text{ erg/s}LEdd​∼1.3×1038(M⊙​M​) erg/s

Since $\dot M=Mc^2$, there is also a critical $\dot M_{Edd}$, known as the Eddington accretion rate, given as

M˙≤M˙Edd≡4πGMηcκ∝M\dot M\le\dot M_{Edd}\equiv\frac{4\pi GM}{\eta c\kappa}\propto MM˙≤M˙Edd​≡ηcκ4πGM​∝M

Note that

dMdt∝BM⇒M=M0eB(t−t0)\frac{\text dM}{\text dt}\propto BM\Rightarrow M=M_0e^{B(t-t_0)}dtdM​∝BM⇒M=M0​eB(t−t0​)

So Eddington accretion undergoes exponential growth.

Previous天体物理吸积过程NextChapter 2. Fluid Dynamics

Last updated 4 years ago