Week4: Orbits

Spherical potential $\Phi(r)$

In the spherical coordinates, the Lagrangian is

L=12v2Φ(r)=12r˙2+12(rθ˙)2+12(rsinθϕ˙)2Φ(r)\mathcal L=\frac12v^2-\Phi(r)=\frac12\dot r^2+\frac12\left(r\dot\theta\right)^2+\frac12\left(r\sin\theta\dot\phi\right)^2-\Phi(r)

The corresponding generalized momenta are

pr=Lr˙=r˙pθ=Lθ˙=r2θ˙pϕ=Lϕ˙=r2sin2θϕ˙p_r=\frac{\partial \mathcal L}{\partial \dot r}=\dot r\\ p_\theta=\frac{\partial \mathcal L}{\partial \dot \theta}=r^2\dot \theta\\ p_\phi=\frac{\partial \mathcal L}{\partial \dot \phi}=r^2\sin^2 \theta\dot\phi

The Hamiltonian

H=pqL=pr22+pθ22r2+pϕ22r2sin2θ+Φ(r)H=\vec p\cdot\vec q-\mathcal L=\frac{p^2_r}{2}+\frac{p_\theta^2}{2r^2}+\frac{p_\phi^2}{2r^2\sin^2\theta}+\Phi(r)

We can define

pα2=pθ2+pϕ2sin2θp_\alpha^2=p_\theta^2+\frac{p_\phi^2}{\sin^2\theta}

so that we can simplify the Hamiltonian

H=pr22+pα22r2+Φ(r)H=\frac{p^2_r}{2}+\frac{p_\alpha^2}{2r^2}+\Phi(r)

$\alpha$ is a new generalized coordinate which satisfies

pα=Lα˙=r2θ˙2+sin2θϕ˙2=rvθ2+vϕ2=rvp_\alpha=\frac{\partial \mathcal L}{\partial \dot\alpha}=r^2\sqrt{\dot\theta^2+\sin^2\theta\dot\phi^2}=r\sqrt{v_\theta^2+v_\phi^2}=rv_\perp

Since

p˙α=Hα=0\dot p_\alpha=-\frac{\partial H}{\partial \alpha}=0

the generalized momentum, or the angular momentum perpendicular to the plane determined by $\vec v$ and $\vec v+\text d\vec v$ is conserved, and we can reselect the coordinates and consider the 2D problem with coordinates $(r,\theta)$

  • Conservation of angular momentum

    p˙θ=Hθ=0pθ=r2θ˙=L\dot p_\theta=-\frac{\partial H}{\partial \theta}=0\Rightarrow p_\theta=r^2\dot\theta=L
    • Conservation of energy

      Ht=0pr22+pθ22r2+Φ(r)r˙22+Φeff=E\frac{\partial H}{\partial t}=0\Rightarrow \frac{p^2_r}{2}+\frac{p_\theta^2}{2r^2}+\Phi(r)\equiv \frac{\dot r^2}{2}+\Phi_{eff}=E

Physically, the radial distance $r$ is reachable only when

EΦeff(r)E\ge\Phi_{eff}(r)

If this is satisfied in an closed interval $[r_1, r_2]$, intuitionally, $r$ could oscillate between $r_1$ and $r_2$, whose period (so-called radial period) is

Tr=2r1r2dtdrdr=2r1r2dr2[EΦ(r)]L2/r2T_r=2\int_{r_1}^{r_2}\frac{\text dt}{\text dr}\text dr=2\int_{r_1}^{r_2}\frac{\text dr}{\sqrt{2[E-\Phi(r)]-{L^2}/{r^2}}}

In one complete radial period ($r_1\to r_2\to r_1$), usually $\Delta\theta\neq 2\pi$ (Kepler orbits are so special!). In fact

Δθ=2r1r2dθdrdr=2r1r2Ldrr22[EΦ(r)]L2/r2\Delta\theta=2\int_{r_1}^{r_2}\frac{\text d\theta}{\text dr}\text dr=2\int_{r_1}^{r_2}\frac{\text Ldr}{r^2\sqrt{2[E-\Phi(r)]-{L^2}/{r^2}}}

And the azimuthal period is thus determined to be

Tθ=2πΔθTrT_\theta=\frac{2\pi}{\Delta\theta}T_r

Of course usually $T\theta\neq T_r$, but if $T\theta/T_r$ is at least rational, the orbit will turn out to be closed. Below we discuss several special closed orbits

  1. Kepler

    Tθ=Tr=2πa3GM, Tθ:Tr=1:1T_\theta=T_r=2\pi\sqrt{\frac{a^3}{GM}}, \ T_\theta:T_r=1:1
  2. Homogeneous sphere (see in last week's notes)

    Φ(r)=C+12Ω2r2=C+12Ω2(x2+y2)\Phi(r)=C+\frac12\Omega^2r^2=C+\frac12\Omega^2(x^2+y^2)

    Newton's second law gives

    {x¨=Φx(x,y)=Ωxy¨=Φy(x,y)=ΩyHarmonic oscillators!\left\{\begin{array}{c} {\ddot x=-\Phi_x(x,y)=-\Omega x\\ \ddot y=-\Phi_y(x,y)=-\Omega y} \end{array}\right. \Rightarrow \text{Harmonic oscillators!}

    The corresponding orbits are thus eclipses centered at the coordinate origin, so every $2\pi$ angle the object goes around, the variation of $r$ undergoes two orbits

    Tθ=2πΩ, Tr=Tθ2, Tθ:Tr=2:1T_\theta=\frac{2\pi}{\Omega},\ T_r=\frac{T_\theta}{2},\ T_\theta:T_r=2:1

In general,

1<TθTr<21<\frac{T_\theta}{T_r}<2

A more intuitional picture is that the orbit continuously precesses at a rate of

ΩP=Δθ2πTr\Omega_P=\frac{\Delta\theta-2\pi}{T_r}
  • $\Omega_P<0$ - Retrograde

  • $\Omega_P>0$ - Prograde

Last updated