Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  1. 天体物理动力学

Week4: Orbits

Spherical potential $\Phi(r)$

In the spherical coordinates, the Lagrangian is

L=12v2−Φ(r)=12r˙2+12(rθ˙)2+12(rsin⁡θϕ˙)2−Φ(r)\mathcal L=\frac12v^2-\Phi(r)=\frac12\dot r^2+\frac12\left(r\dot\theta\right)^2+\frac12\left(r\sin\theta\dot\phi\right)^2-\Phi(r)L=21​v2−Φ(r)=21​r˙2+21​(rθ˙)2+21​(rsinθϕ˙​)2−Φ(r)

The corresponding generalized momenta are

pr=∂L∂r˙=r˙pθ=∂L∂θ˙=r2θ˙pϕ=∂L∂ϕ˙=r2sin⁡2θϕ˙p_r=\frac{\partial \mathcal L}{\partial \dot r}=\dot r\\ p_\theta=\frac{\partial \mathcal L}{\partial \dot \theta}=r^2\dot \theta\\ p_\phi=\frac{\partial \mathcal L}{\partial \dot \phi}=r^2\sin^2 \theta\dot\phipr​=∂r˙∂L​=r˙pθ​=∂θ˙∂L​=r2θ˙pϕ​=∂ϕ˙​∂L​=r2sin2θϕ˙​

The Hamiltonian

H=p⃗⋅q⃗−L=pr22+pθ22r2+pϕ22r2sin⁡2θ+Φ(r)H=\vec p\cdot\vec q-\mathcal L=\frac{p^2_r}{2}+\frac{p_\theta^2}{2r^2}+\frac{p_\phi^2}{2r^2\sin^2\theta}+\Phi(r)H=p​⋅q​−L=2pr2​​+2r2pθ2​​+2r2sin2θpϕ2​​+Φ(r)

We can define

pα2=pθ2+pϕ2sin⁡2θp_\alpha^2=p_\theta^2+\frac{p_\phi^2}{\sin^2\theta}pα2​=pθ2​+sin2θpϕ2​​

so that we can simplify the Hamiltonian

H=pr22+pα22r2+Φ(r)H=\frac{p^2_r}{2}+\frac{p_\alpha^2}{2r^2}+\Phi(r)H=2pr2​​+2r2pα2​​+Φ(r)

$\alpha$ is a new generalized coordinate which satisfies

pα=∂L∂α˙=r2θ˙2+sin⁡2θϕ˙2=rvθ2+vϕ2=rv⊥p_\alpha=\frac{\partial \mathcal L}{\partial \dot\alpha}=r^2\sqrt{\dot\theta^2+\sin^2\theta\dot\phi^2}=r\sqrt{v_\theta^2+v_\phi^2}=rv_\perppα​=∂α˙∂L​=r2θ˙2+sin2θϕ˙​2​=rvθ2​+vϕ2​​=rv⊥​

Since

p˙α=−∂H∂α=0\dot p_\alpha=-\frac{\partial H}{\partial \alpha}=0p˙​α​=−∂α∂H​=0

the generalized momentum, or the angular momentum perpendicular to the plane determined by $\vec v$ and $\vec v+\text d\vec v$ is conserved, and we can reselect the coordinates and consider the 2D problem with coordinates $(r,\theta)$

  • Conservation of angular momentum

    p˙θ=−∂H∂θ=0⇒pθ=r2θ˙=L\dot p_\theta=-\frac{\partial H}{\partial \theta}=0\Rightarrow p_\theta=r^2\dot\theta=Lp˙​θ​=−∂θ∂H​=0⇒pθ​=r2θ˙=L
    • Conservation of energy

      ∂H∂t=0⇒pr22+pθ22r2+Φ(r)≡r˙22+Φeff=E\frac{\partial H}{\partial t}=0\Rightarrow \frac{p^2_r}{2}+\frac{p_\theta^2}{2r^2}+\Phi(r)\equiv \frac{\dot r^2}{2}+\Phi_{eff}=E∂t∂H​=0⇒2pr2​​+2r2pθ2​​+Φ(r)≡2r˙2​+Φeff​=E

Physically, the radial distance $r$ is reachable only when

E≥Φeff(r)E\ge\Phi_{eff}(r)E≥Φeff​(r)

If this is satisfied in an closed interval $[r_1, r_2]$, intuitionally, $r$ could oscillate between $r_1$ and $r_2$, whose period (so-called radial period) is

Tr=2∫r1r2dtdrdr=2∫r1r2dr2[E−Φ(r)]−L2/r2T_r=2\int_{r_1}^{r_2}\frac{\text dt}{\text dr}\text dr=2\int_{r_1}^{r_2}\frac{\text dr}{\sqrt{2[E-\Phi(r)]-{L^2}/{r^2}}}Tr​=2∫r1​r2​​drdt​dr=2∫r1​r2​​2[E−Φ(r)]−L2/r2​dr​

In one complete radial period ($r_1\to r_2\to r_1$), usually $\Delta\theta\neq 2\pi$ (Kepler orbits are so special!). In fact

Δθ=2∫r1r2dθdrdr=2∫r1r2Ldrr22[E−Φ(r)]−L2/r2\Delta\theta=2\int_{r_1}^{r_2}\frac{\text d\theta}{\text dr}\text dr=2\int_{r_1}^{r_2}\frac{\text Ldr}{r^2\sqrt{2[E-\Phi(r)]-{L^2}/{r^2}}}Δθ=2∫r1​r2​​drdθ​dr=2∫r1​r2​​r22[E−Φ(r)]−L2/r2​Ldr​

And the azimuthal period is thus determined to be

Tθ=2πΔθTrT_\theta=\frac{2\pi}{\Delta\theta}T_rTθ​=Δθ2π​Tr​

Of course usually $T\theta\neq T_r$, but if $T\theta/T_r$ is at least rational, the orbit will turn out to be closed. Below we discuss several special closed orbits

  1. Kepler

    Tθ=Tr=2πa3GM, Tθ:Tr=1:1T_\theta=T_r=2\pi\sqrt{\frac{a^3}{GM}}, \ T_\theta:T_r=1:1Tθ​=Tr​=2πGMa3​​, Tθ​:Tr​=1:1
  2. Homogeneous sphere (see in last week's notes)

    Φ(r)=C+12Ω2r2=C+12Ω2(x2+y2)\Phi(r)=C+\frac12\Omega^2r^2=C+\frac12\Omega^2(x^2+y^2)Φ(r)=C+21​Ω2r2=C+21​Ω2(x2+y2)

    Newton's second law gives

    {x¨=−Φx(x,y)=−Ωxy¨=−Φy(x,y)=−Ωy⇒Harmonic oscillators!\left\{\begin{array}{c} {\ddot x=-\Phi_x(x,y)=-\Omega x\\ \ddot y=-\Phi_y(x,y)=-\Omega y} \end{array}\right. \Rightarrow \text{Harmonic oscillators!}{x¨=−Φx​(x,y)=−Ωxy¨​=−Φy​(x,y)=−Ωy​⇒Harmonic oscillators!

    The corresponding orbits are thus eclipses centered at the coordinate origin, so every $2\pi$ angle the object goes around, the variation of $r$ undergoes two orbits

    Tθ=2πΩ, Tr=Tθ2, Tθ:Tr=2:1T_\theta=\frac{2\pi}{\Omega},\ T_r=\frac{T_\theta}{2},\ T_\theta:T_r=2:1Tθ​=Ω2π​, Tr​=2Tθ​​, Tθ​:Tr​=2:1

In general,

1<TθTr<21<\frac{T_\theta}{T_r}<21<Tr​Tθ​​<2

A more intuitional picture is that the orbit continuously precesses at a rate of

ΩP=Δθ−2πTr\Omega_P=\frac{\Delta\theta-2\pi}{T_r}ΩP​=Tr​Δθ−2π​
  • $\Omega_P<0$ - Retrograde

  • $\Omega_P>0$ - Prograde

PreviousWeek5: OrbitsNextWeek3: Potential Theory

Last updated 4 years ago