Chapter 3 Relativistic Cosmology
Robertson-Walker Metric
Flat (Euclid) space
(dl)2=(dx)2+(dy)2+(dz)2⇒Δl=∫12(dx)2+(dy)2+(dz)2Flat (Minkowski) spacetime
(dl)2=(cdt)2−(dx)2−(dy)2−(dz)2⇒Δl=∫12(cdt)2−(dx)2−(dy)2−(dz)2Proper distance
distance at $t_A=t_B$ (hypothesis on the existence of a well-defined universal time)
Curvature
K=π3D→0limD32πD−Cwhere $D$ is the radius, $C$ is the perimeter
Some 2-D examples
Plain - zero curvature
Sphere - positive curvature
Hyperbolic paraboloid (马鞍面;双曲抛物面) - negative curvature
2-D curvature
Spherical polar coordinates $(r,\theta,\phi)$
(dl)2=(dD)2+(rdϕ)2=(Rdθ)2+(rdϕ)2=(cosθdr)2+(rdϕ)2=(1−r2/R2dr)2+(rdϕ)2In general, 2-D curvature
(dl)2=(1−kr2dr)2+(rdϕ)23-D curvature
(dl)2=(1−kr2dr)2+(rdθ)2+(rsinθdϕ)2R-W Metric
(ds)2=(cdt)2−(1−kr2dr)2−(rdθ)2−(rsinθdϕ)2Proper distance
ΔL=(−Δs)2, dt=0Comoving distance
K(t)=a2(t)k, r(t)=a(t)x⇒(ds)2=(cdt)2−a2(t)[(1−kx2dx)2−(xdθ)2−(xsinθdϕ)2]Traditionally, we use $r$ to represent comoving radial distance
⇒(ds)2=(cdt)2−a2(t)[1−kr2dr2−r2(dθ2+sin2θdϕ2)]
Friedmann Equation
Einstein's field equation
Gαβ=c28πGTαβEinstein tensor
Gαβ=Rαβ−21gαβRMetric
ds2=gαβdxαdxβ
Friedmann equation
(aa˙)2+a2kc2=38πGρaa¨=−34πG(ρ+c23P)the second is known as acceleration equation
At present time
Ω0=ρcρ0, ρc=8πG3H02rewrite Friedmann equation
a˙02=38πGa02ρ0−kc2⇒H02a02=H02a02Ω0−kc2⇒kc2=H02a02(Ω0−1), k=+1,0,−1$\Omega_0>1$, overcritical density, $k=+1$
$\Omega=1$, critical density, $k=0$
$0<\Omega_0<1$, undercritical density, $k=-1$
Difference between Newtonion cosmology
Newtonion
kc2=−mc22UGR, $k$ stands for curvature
Cosmological constant
Static universe
$a$ is a constant, $\dot a=\ddot a=0$
$H=0$
Age of the universe is infinite
Friedmann equation
a2kc2=38πGρ=−c28πGP0To make sure that $\rho>0$, $P_0<0$ , Einstein introduced a constant, Lorentz-invariant term $\Lambda$
Gαβ−Λgαβ=c48πGTαβrewrite Friedmann equation
(aa˙)2+a2kc2=38πGρ+3Λc22aa¨+(aa˙)2+a2kc2=−c28πGP+Λc2Define vacuum energy density
ρvac=8πGΛc2we have
2aa¨+(aa˙)2+a2kc2=−c28πG(P−ρvac)For Newtonion cosmology, we have to introduce an additional potential energy term
VΛ≡−61Λmc2r2⇒U=T+V+VΛ=21mr˙2−34πGρr2m−61Λmc2r2⇒FΛ=−∇VΛ
Last updated
