Chapter 3 Relativistic Cosmology

Robertson-Walker Metric

  • Flat (Euclid) space

    (dl)2=(dx)2+(dy)2+(dz)2Δl=12(dx)2+(dy)2+(dz)2(\text{d}l)^2=(\text{d}x)^2+(\text{d}y)^2+(\text{d}z)^2\\ \Rightarrow \Delta l=\int_1^2\sqrt{(\text{d}x)^2+(\text{d}y)^2+(\text{d}z)^2}
  • Flat (Minkowski) spacetime

    (dl)2=(cdt)2(dx)2(dy)2(dz)2Δl=12(cdt)2(dx)2(dy)2(dz)2(\text{d}l)^2=(c\text{d}t)^2-(\text{d}x)^2-(\text{d}y)^2-(\text{d}z)^2\\ \Rightarrow \Delta l=\int_1^2\sqrt{(c\text{d}t)^2-(\text{d}x)^2-(\text{d}y)^2-(\text{d}z)^2}
  • Proper distance

    distance at $t_A=t_B$ (hypothesis on the existence of a well-defined universal time)

  • Curvature

    K=3πlimD02πDCD3K=\frac{3}{\pi}\lim_{D\to 0}\frac{2\pi D-C}{D^3}

    where $D​$ is the radius, $C​$ is the perimeter

    Some 2-D​ examples

    • Plain - zero curvature

    • Sphere - positive curvature

    • Hyperbolic paraboloid (马鞍面;双曲抛物面) - negative curvature

  • 2-D curvature

    Spherical polar coordinates $(r,\theta,\phi)$

    (dl)2=(dD)2+(rdϕ)2=(Rdθ)2+(rdϕ)2=(drcosθ)2+(rdϕ)2=(dr1r2/R2)2+(rdϕ)2\begin{aligned} (\text{d}l)^2&=(\text{d}D)^2+(r\text{d}\phi)^2\\ &=(R\text{d}\theta)^2+(r\text{d}\phi)^2\\ &=\left(\frac{\text{d}r}{\cos\theta}\right)^2+(r\text{d}\phi)^2\\ &=\left(\frac{\text{d}r}{\sqrt{1-r^2/R^2}}\right)^2+(r\text{d}\phi)^2 \end{aligned}

    In general, 2-D curvature

    (dl)2=(dr1kr2)2+(rdϕ)2(\text{d}l)^2=\left(\frac{\text{d}r}{\sqrt{1-kr^2}}\right)^2+(r\text{d}\phi)^2
  • 3-D curvature

    (dl)2=(dr1kr2)2+(rdθ)2+(rsinθdϕ)2(\text{d}l)^2=\left(\frac{\text{d}r}{\sqrt{1-kr^2}}\right)^2+(r\text{d}\theta)^2+(r\sin\theta\text{d}\phi)^2
  • R-W Metric

    (ds)2=(cdt)2(dr1kr2)2(rdθ)2(rsinθdϕ)2(\text ds)^2=(c\text dt)^2-\left(\frac{\text{d}r}{\sqrt{1-kr^2}}\right)^2-(r\text{d}\theta)^2-(r\sin\theta\text{d}\phi)^2
    • Proper distance

      ΔL=(Δs)2, dt=0\Delta L=\sqrt{(-\Delta s)^2},\ \text dt=0
    • Comoving distance

      K(t)=ka2(t), r(t)=a(t)x(ds)2=(cdt)2a2(t)[(dx1kx2)2(xdθ)2(xsinθdϕ)2]K(t)=\frac{k}{a^2(t)},\ r(t)=a(t)x\\ \Rightarrow (\text ds)^2=(c\text dt)^2-a^2(t)\left[\left(\frac{\text{d}x}{\sqrt{1-kx^2}}\right)^2-(x\text{d}\theta)^2-(x\sin\theta\text{d}\phi)^2\right]

      Traditionally, we use $r$ to represent comoving radial distance

      (ds)2=(cdt)2a2(t)[dr21kr2r2(dθ2+sin2θdϕ2)]\Rightarrow (\text ds)^2=(c\text dt)^2-a^2(t)\left[\frac{\text{d}r^2}{1-kr^2}-r^2(\text{d}\theta^2+\sin^2\theta\text{d}\phi^2)\right]
  • SR model - the Milne Model - empty universe

    • Time dilution

      τ=γ1t(t,r)(τ,l)\tau=\gamma^{-1}t\\ (t,r)\Rightarrow(\tau,l)

Friedmann Equation

  • Einstein's field equation

    Gαβ=8πGc2TαβG_{\alpha\beta}=\frac{8\pi G}{c^2}T_{\alpha\beta}
    • Einstein tensor

      Gαβ=Rαβ12gαβRG_{\alpha\beta}=R_{\alpha\beta}-\frac{1}{2}g_{\alpha\beta}R
    • Metric

      ds2=gαβdxαdxβ\mathrm ds^2=g_{\alpha\beta}\mathrm dx^\alpha\mathrm dx^\beta
  • Friedmann equation

    (a˙a)2+kc2a2=8πG3ρa¨a=4πG3(ρ+3Pc2)\left(\frac{\dot{a}}{a}\right)^2+\frac{kc^2}{a^2}=\frac{8\pi G}{3}\rho\\ \frac{\ddot a}{a}=-\frac{4\pi G}{3}\left(\rho+\frac{3P}{c^2}\right)

    the second is known as acceleration equation

  • At present time

    Ω0=ρ0ρc, ρc=3H028πG\Omega_0=\frac{\rho_0}{\rho_c},\ \rho_c=\frac{3H_0^2}{8\pi G}

    rewrite Friedmann equation

    a˙02=8π3Ga02ρ0kc2H02a02=H02a02Ω0kc2kc2=H02a02(Ω01), k=+1,0,1\dot a_0^2=\frac{8\pi}{3}Ga_0^2\rho_0-kc^2\\ \Rightarrow H_0^2a_0^2=H_0^2a_0^2\Omega_0-kc^2\\ \Rightarrow kc^2=H_0^2a_0^2(\Omega_0-1),\ k=+1,0,-1
    • $\Omega_0>1$, overcritical density, $k=+1$

    • $\Omega=1$, critical density, $k=0$

    • $0<\Omega_0<1$, undercritical density, $k=-1$

  • Difference between Newtonion cosmology

    • Newtonion

      kc2=2Umc2kc^2=-\frac{2U}{mc^2}
    • GR, $k$ stands for curvature

Cosmological constant

  • Static universe

    • $a$ is a constant, $\dot a=\ddot a=0$

    • $H=0$

    • Age of the universe is infinite

    • Friedmann equation

      kc2a2=8πG3ρ=8πGc2P0\frac{kc^2}{a^2}=\frac{8\pi G}{3}\rho=-\frac{8\pi G}{c^2}P_0
    • To make sure that $\rho>0$, $P_0<0$ , Einstein introduced a constant, Lorentz-invariant term $\Lambda$

      GαβΛgαβ=8πGc4TαβG_{\alpha\beta}-\Lambda{g_{\alpha\beta}}=\frac{8\pi G}{c^4}T_{\alpha\beta}

      rewrite Friedmann equation

      (a˙a)2+kc2a2=8πG3ρ+Λc232a¨a+(a˙a)2+kc2a2=8πGc2P+Λc2\left(\frac{\dot{a}}{a}\right)^2+\frac{kc^2}{a^2}=\frac{8\pi G}{3}\rho+\frac{\Lambda c^2}{3}\\ 2\frac{\ddot a}{a}+\left(\frac{\dot{a}}{a}\right)^2+\frac{kc^2}{a^2}=-\frac{8\pi G}{c^2}P+\Lambda c^2
    • Define vacuum energy density

      ρvac=Λc28πG\rho_{vac}=\frac{\Lambda c^2}{8\pi G}

      we have

      2a¨a+(a˙a)2+kc2a2=8πGc2(Pρvac)2\frac{\ddot a}{a}+\left(\frac{\dot{a}}{a}\right)^2+\frac{kc^2}{a^2}=-\frac{8\pi G}{c^2}(P-\rho_{vac})
    • For Newtonion cosmology, we have to introduce an additional potential energy term

      VΛ16Λmc2r2V_\Lambda\equiv-\frac{1}{6}\Lambda mc^2r^2
      U=T+V+VΛ=12mr˙24π3Gρr2m16Λmc2r2\begin{aligned} \Rightarrow U&=T+V+V_\Lambda\\ &=\frac{1}{2}m\dot{r}^2-\frac{4\pi}{3}G\rho r^2m-\frac{1}{6}\Lambda mc^2r^2 \end{aligned}
      FΛ=VΛ\Rightarrow \vec F_\Lambda=-\nabla V_\Lambda

Last updated