Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Angular-action variables
  • Orbital tori
  • Angle-action variables for spherical potentials
  1. 天体物理动力学

Week8: Orbits

Angular-action variables

Since elementary Newtonian or Lagrangian mechanics restricts our choice of coordinates to ones that are rarely integrals, we work in the more general framework of Hamiltonian mechanics.

Thus, we shall focus on a particular set of canonical coordinates, called angular-action variables.

  • The three momenta are integrals - actions

  • The conjugate variables - angles

  • An orbit fortunate enough to possess angle-action variables is called a regular orbit

Let us denote the angle-action variables by $(\vec\theta,\vec J)$. We assume that the momenta $\vec J=(J_1,J_2,J_3)$ are integrals of motion, then Hamilton's equations read

0=J˙i=−∂H∂θi0=\dot J_i=-\frac{\partial H}{\partial\theta_i}0=J˙i​=−∂θi​∂H​

Therefore, the Hamiltonian must be independent of the coordinates $\vec\theta$. Consequently,

θ˙i=∂H∂Ji≡Ωi(J⃗)\dot\theta_i=\frac{\partial H}{\partial J_i}\equiv\Omega_i(\vec J)θ˙i​=∂Ji​∂H​≡Ωi​(J)

is independent of $\vec\theta$, so

θi(t)=θi(0)+Ωit\theta_i(t)=\theta_i(0)+\Omega_itθi​(t)=θi​(0)+Ωi​t

Orbital tori

We restrict our attention to bound orbits, so that $x_i$ are periodic functions of the $\theta_i$. We can scale $\theta_i$ so that $\vec x$ returns to its original value every time $\theta_i$ has increased by $2\pi$. Then we can expand $\vec x$ in a Fourier series

x⃗(θ⃗,J⃗)=∑n⃗X⃗n⃗(J⃗)ein⃗⋅θ⃗=∑n⃗X⃗n⃗(J⃗)ein⃗⋅θ⃗0ein⃗⋅Ω⃗t\vec x\left(\vec \theta,\vec J\right)=\sum_{\vec n}\vec X_{\vec n}(\vec J)\mathrm e^{i\vec n\cdot\vec\theta}=\sum_{\vec n}\vec X_{\vec n}(\vec J)\mathrm e^{i\vec n\cdot\vec\theta_0}\mathrm e^{i\vec n\cdot\vec\Omega t}x(θ,J)=n∑​Xn​(J)ein⋅θ=n∑​Xn​(J)ein⋅θ0​ein⋅Ωt

where the sum is over all vectors $\vec n$ with integer components. The spatial coordinates are Fourier series in time, in which every frequency is a sum of integer multiples $(n_1,n_2,n_3)$ of the three fundamental frequencies $\Omega_i(\vec J)$. Such a time series is said to be conditionally periodic or quasiperiodic.

Quasiperiodic here is like quasicrystal - a structure whose Fourier transform is discrete, but in which there are more fundamental frequencies than independent variables

An orbit is said to be resonant when its fundamental frequencies satisfy a relation of the form $\vec n \cdot\vec \Omega = 0$ for some integer triple $\vec n\neq \vec 0$. Usually this implies that two of the frequencies are commensurable, that is the ratio $ \Omega_i/ \Omega_j$ is a rational number $(−n_j/n_i)$.

In fact, incrementing $\theta_1$ by $2\pi$ while leaving $\theta_2,\theta_3$ fixed brings one back to the same point in phase space, which is also true for $\theta_2$ and $\theta_3$. In this way, we can sew together each pair of opposite edges of the corresponding rectangular region in phase space $(\theta_1,\theta_2,\theta_3)$. Thus we generate a three-torus.

We use the Poincaré invariants to label these three-tori

Ji′≡12π∬interior of γidq⃗⋅dp⃗=12π∬interior of γi∑j=1,2,3dqjdpjJ_i'\equiv\frac{1}{2\pi}\iint_{\text{interior of }\gamma_i}\text d\vec q\cdot\text d\vec p=\frac{1}{2\pi}\iint_{\text{interior of }\gamma_i}\sum_{j=1,2,3}\text d q_j\text d p_jJi′​≡2π1​∬interior of γi​​dq​⋅dp​=2π1​∬interior of γi​​j=1,2,3∑​dqj​dpj​

Poincaré invariant theorem

If $S(0)$ is any two-surface in phase space, and $S(t)$ is the surface into which $S(0)$ is mapped by the time-evolution operator $\operatorname{H}_t$, then

∬S(0)dq⃗⋅dp⃗=∬S(t)dq⃗⋅dp⃗\iint_{S(0)}\text d\vec q\cdot\text d\vec p =\iint_{S(t)}\text d\vec q\cdot\text d\vec p∬S(0)​dq​⋅dp​=∬S(t)​dq​⋅dp​

Corollary (by Green's theorem)

If $\gamma(0)$ is any closed path through phase space, and $\gamma(t)$ is the path to which $\gamma(0)$ is mapped by the time-evolution operator, then

∮γ(0)dq⃗⋅p⃗=∮γ(t)dq⃗⋅p⃗\oint_{\gamma(0)}\text d\vec q\cdot\vec p=\oint_{\gamma(t)}\text d\vec q\cdot\vec p∮γ(0)​dq​⋅p​=∮γ(t)​dq​⋅p​

where the integral is over any surface that is bounded by the path $\gamma_i$ on which $\theta_i$ increase from $0$ to $2\pi$ while everything else is held constant. Since angle-action variables are canonical, $\text d\vec q\text d\vec p=\text d\vec \theta\text d\vec J$, we have

Ji′≡12π∬interior of γidθ⃗dJ⃗=12π∬interior of γidθidJiJ_i'\equiv\frac{1}{2\pi}\iint_{\text{interior of }\gamma_i}\text d\vec \theta\text d\vec J=\frac{1}{2\pi}\iint_{\text{interior of }\gamma_i}\text d\theta_i\text dJ_iJi′​≡2π1​∬interior of γi​​dθdJ=2π1​∬interior of γi​​dθi​dJi​

Any set of phase-space coordinates $\vec W \equiv {W_\alpha, \alpha = 1,...,2n}$ is said to be canonical if

[Wα,Wβ]=Jαβ[W_\alpha,W_\beta]=J_{\alpha\beta}[Wα​,Wβ​]=Jαβ​

where the symplectic matrix is

J≡(0I−I0)\begin{equation} \mathbf{J} \equiv\left(\begin{array}{cc}0 & \mathbf{I} \\ -\mathbf{I} & 0\end{array}\right) \end{equation}J≡(0−I​I0​)​​

and $[\cdot]$ denotes the Poisson bracket

[A,B]≡∂A∂q⃗⋅∂B∂p⃗−∂A∂p⃗⋅∂B∂q⃗[A, B] \equiv \frac{\partial A}{\partial \vec{q}} \cdot \frac{\partial B}{\partial \vec{p}}-\frac{\partial A}{\partial \vec{p}} \cdot \frac{\partial B}{\partial \vec{q}}[A,B]≡∂q​∂A​⋅∂p​∂B​−∂p​∂A​⋅∂q​∂B​

The phase-space volume element is the same in any canonical coordinates.

If we rescale $\vec q$ and $\vec p$ so that $\gamma_i$ becomes a circle, $J_i'$ is in fact closely related to the area, and thus the radius, of the circle.

Ji′=Ai2π=ri22⇒ri=2Ji′J_i'=\frac{A_i}{2\pi}=\frac{r_i^2}{2}\Rightarrow r_i=\sqrt{2J_i'}Ji′​=2πAi​​=2ri2​​⇒ri​=2Ji′​​

So $(\theta_i,J_i)$ is closely analogous to plane polar coordinates (though $J_i$ is more analogous to the area). As a result, there is a coordinate singularity within the domain of integration. With the sigularity excluded, we can derive

Ji′=12π(∮γiJidθi−∮Ji=JicJidθi)=Ji−JicJ_i'=\frac{1}{2\pi}\left(\oint_{\gamma_i}J_i\text d\theta_i-\oint_{J_i=J_i^c}J_i\text d\theta_i\right)=J_i-J_i^cJi′​=2π1​(∮γi​​Ji​dθi​−∮Ji​=Jic​​Ji​dθi​)=Ji​−Jic​

where $J_i^c$ is some definite value of a small circle around the singularity. If we set $J_i=0$ at the singularity, $J_i'=J_i$. Henceforce we assume this choice has been made.

Of course in the $(\vec q,\vec p)$ phase space there is no singularity. Therefore we can simply replace the surface integral with a line integral

Ji=∮γip⃗dq⃗J_i=\oint_{\gamma_i}\vec p\text d\vec qJi​=∮γi​​p​dq​
  1. Time averages theorem

    When a regular orbit is non-resonant, the average time that the phase point of a star on that orbit spends in any region $D$ of its torus is proportional to the integral

    V(D)=∫Dd3θ⃗V(D)=\int_D\text d^3\vec\thetaV(D)=∫D​d3θ

    Proof:

    Let

    fD(θ⃗)={1,θ⃗∈D0,θ⃗∉D=∑n⃗Fn⃗exp⁡(in⃗⋅θ⃗)f_D(\vec\theta)=\left\{ \begin{array}{cc} 1,&\vec\theta\in D\\ 0,&\vec\theta\notin D \end{array}\right.=\sum_{\vec n}F_{\vec n}\exp\left(i\vec n\cdot\vec\theta\right)fD​(θ)={1,0,​θ∈Dθ∈/D​=n∑​Fn​exp(in⋅θ)

    $F_\vec n$ is the Fourier coefficient.

    Now

    V(D)≡∫Dd3θ⃗=∫torusd3θ⃗fD(θ⃗)=∫torusd3θ⃗∑n⃗Fn⃗exp⁡(in⃗⋅θ⃗)=∑n⃗Fn⃗∏k=13∫02πdθkexp⁡(inkθk)=(2π)3F0⃗\begin{align*} V(D)&\equiv \int_D\text d^3\vec\theta=\int_{\text{torus}}\text d^3\vec\theta f_D(\vec\theta)\\ &=\int_{\text{torus}}\text d^3\vec\theta\sum_{\vec n}F_{\vec n}\exp\left(i\vec n\cdot\vec\theta\right)\\ &=\sum_{\vec n}F_{\vec n}\prod_{k=1}^3\int_{0}^{2\pi}\text d\theta_k\exp\left(in_k\theta_k\right)\\ &=\left(2\pi\right)^3 F_{\vec 0} \end{align*}V(D)​≡∫D​d3θ=∫torus​d3θfD​(θ)=∫torus​d3θn∑​Fn​exp(in⋅θ)=n∑​Fn​k=1∏3​∫02π​dθk​exp(ink​θk​)=(2π)3F0​​

    On the other hand, the fraction of the interval $(0,T)$ during which the star's phase point lies in $D$ is

    τT(D)=1T∫0TfD[θ⃗(t)]dt=1T∑n⃗Fn⃗∫0Texp⁡[in⃗⋅(θ⃗0+Ω⃗t)]dt=1T∑n⃗Fn⃗exp⁡(in⃗⋅θ⃗0)∫0Texp⁡(in⃗⋅Ω⃗t)dt=F0⃗+1T∑n⃗≠0⃗Fn⃗exp⁡(in⃗⋅θ⃗0)exp⁡(in⃗⋅Ω⃗T)−1in⃗⋅Ω⃗\begin{align*} \tau_T(D)&=\frac1T\int_0^Tf_D\left[\vec\theta(t)\right]\text dt\\ &=\frac1T\sum_{\vec n}F_{\vec n}\int_0^T\exp\left[i\vec n\cdot\left(\vec\theta_0+\vec\Omega t\right)\right]\text dt\\ &=\frac1T\sum_{\vec n}F_{\vec n}\exp\left(i\vec n\cdot\vec\theta_0\right)\int_0^T\exp\left(i\vec n\cdot\vec\Omega t\right)\text dt\\ &=F_{\vec 0}+\frac1T\sum_{\vec n\neq\vec0}F_{\vec n}\exp\left(i\vec n\cdot\vec\theta_0\right)\frac{\exp\left(i\vec n\cdot\vec\Omega T\right)-1}{i\vec n\cdot\vec\Omega} \end{align*}τT​(D)​=T1​∫0T​fD​[θ(t)]dt=T1​n∑​Fn​∫0T​exp[in⋅(θ0​+Ωt)]dt=T1​n∑​Fn​exp(in⋅θ0​)∫0T​exp(in⋅Ωt)dt=F0​+T1​n=0∑​Fn​exp(in⋅θ0​)in⋅Ωexp(in⋅ΩT)−1​​

    Thus

    lim⁡T→∞τT(D)=F0⃗∝V(D)\lim_{T\to\infty}\tau_T(D)=F_{\vec0}\propto V(D)T→∞lim​τT​(D)=F0​∝V(D)

    But if the orbit is resonant, $\vec n\cdot\vec \Omega$ vanishes for some $\vec n\neq\vec 0$, so the theorem cannot be proved. The star is in fact confined to a spiral on the torus.

  2. Action space

    Now we regard orbits as single points in an abstract space. We define action space to be the imaginary space whose Cartesian coordinates are the actions.

    • Points on the axes represent orbits for which only one of the integrals

      Ji′=12π∬dq⃗⋅dp⃗J'_i=\frac1{2\pi}\iint\text d\vec q\cdot\text d\vec pJi′​=2π1​∬dq​⋅dp​

      is non-zero, which represent closed orbits.

    • The local normal to the surface of constant energy is parallel to the vector $\vec\Omega$, since

      ∇J⃗H=Ω⃗\nabla_{\vec J} H=\vec\Omega∇J​H=Ω
    • Every point in the positive quadrant $Jr , J{\theta} \ge 0$, all the way to infinity, represents a bound orbit.

    A region $R_3$ in action space represents a group of orbits. Let the volume of $R_3$ be $V_3$. The volume of the six-dimensional phase space occupied by the orbit is

    V6=∫R6d3x⃗⋅d3v⃗=∫R6d3J⃗⋅d3θ⃗V_6=\int_{R_6}\text d^3\vec x\cdot \text d^3 \vec v=\int_{R_6}\text d^3\vec J\cdot \text d^3 \vec \thetaV6​=∫R6​​d3x⋅d3v=∫R6​​d3J⋅d3θ

    where $R_6$ is the region of phase visited by stars on the orbits of $R_3$. But for any orbit the angle variables cover $(0,2\pi)$, so

    V6=(2π)3∫R3d3J⃗=(2π)3V3V_6=\left(2\pi\right)^3\int_{R_3}\text d^3\vec J=\left(2\pi\right)^3V_3V6​=(2π)3∫R3​​d3J=(2π)3V3​

    Thus the volume of a region of action space is proportional to the volume of phase space occupied by its orbits

    Phase space - the six-dimensional space with coordinates $(\vec x, \vec v)$.

  3. Hamilton-Jacobi equation

    The transformation between any two sets of canonical coordinates can be effected with a generating function.

    Given any closed path $\Gamma$ in phase space, if $(\vec q,\vec p)$ and $(\vec q',\vec p')$ are canonical coordinate systems, then the conservation of Poincaré invariants in canonical transformation implies that

    ∮Γ(dq⃗⋅p⃗−dq⃗′⋅p⃗′)=0\oint_{\Gamma}\left(\text d\vec q\cdot \vec p-\text d\vec q'\cdot \vec p'\right)=0∮Γ​(dq​⋅p​−dq​′⋅p​′)=0

    Thus the integral does not depend on the path of integration, so for a fixed initial point $\vec w_0$ we have

    S(w⃗)=∫w⃗0w⃗(dq⃗⋅p⃗−dq⃗′⋅p⃗′)S(\vec w)=\int_{\vec w_0}^{\vec w}\left(\text d\vec q\cdot \vec p-\text d\vec q'\cdot \vec p'\right)S(w)=∫w0​w​(dq​⋅p​−dq​′⋅p​′)

    or

    dS=dq⃗⋅p⃗−dq⃗′⋅p⃗′\text dS=\text d\vec q\cdot \vec p-\text d\vec q'\cdot \vec p'dS=dq​⋅p​−dq​′⋅p​′

    where $\text dS$ is an exact differential. $S(\vec q,\vec q')$ is called a generating function of the canonical transformation from $(\vec q,\vec p)$ to $(\vec q',\vec p')$, and

    p⃗=∂S∂q⃗,p⃗′=−∂S∂q⃗′\vec p=\frac{\partial S}{\partial\vec q},\quad \vec p'=-\frac{\partial S}{\partial\vec q'}p​=∂q​∂S​,p​′=−∂q​′∂S​

    Every sufficiently smooth and non-degenerate function $S(\vec q, \vec q')$ defines a canonical transformation through these relations.

    Similarly, let $S_2(\vec q,p')\equiv \vec q'\cdot\vec p'+S$ (Legendre transformation), then

    p⃗=∂S2∂q⃗,q⃗′=∂S∂p⃗′\vec p=\frac{\partial S_2}{\partial\vec q},\quad \vec q'=\frac{\partial S}{\partial\vec p'}p​=∂q​∂S2​​,q​′=∂p​′∂S​

    We can also define $S_3$, $S_4$. They are all generating functions for certain canonical transformation.

    Let $S(\vec q,\vec J)$ be the generation function of the transformation between the angle-action variables and ordinary phase space coordinates $(\vec q,\vec p)=(\vec x,\vec v)$, then

    θ⃗=∂S∂J⃗,p⃗=∂S∂q⃗\vec\theta=\frac{\partial S}{\partial \vec J},\quad \vec p=\frac{\partial S}{\partial \vec q}θ=∂J∂S​,p​=∂q​∂S​

    where $\vec p$ and $\vec \theta$ are now considered fuctions of $\vec q$ and $\vec J$. Now we can rewrite the Hamiltonian

    H(q⃗,∂S∂q⃗(q⃗,J⃗))H\left(\vec q,\frac{\partial S}{\partial \vec q}\left(\vec q,\vec J\right)\right)H(q​,∂q​∂S​(q​,J))

    as a function of $\vec q$ and $\vec J$. By moving along an orbit, we can vary $q_i$ while holding $J_i$ constant. The conservation of energy gives the Hamilton-Jacobi equation

    H(q⃗,∂S∂q⃗(q⃗,J⃗))=Eat fixed J⃗H\left(\vec q,\frac{\partial S}{\partial \vec q}\left(\vec q,\vec J\right)\right)=E\quad\text{at fixed } \vec JH(q​,∂q​∂S​(q​,J))=Eat fixed J

    If we can solve this equation, which is a one-order PDE, the solution should contain some arbitrary constants $K_i$. Then we have

    Ji=12π∮γi∂S∂q⃗⋅dq⃗=ΔS(K⃗)2πJ_i=\frac{1}{2\pi}\oint_{\gamma_i}\frac{\partial S}{\partial\vec q}\cdot\text d\vec q=\frac{\Delta S(\vec K)}{2\pi}Ji​=2π1​∮γi​​∂q​∂S​⋅dq​=2πΔS(K)​

    This equation states that $J_i$ is proportional to the increment in the generating function when one passes once around the torus on the $i$th path—$S$, like the magnetic scalar potential around a current-carrying wire, is a multivalued function.

    When $S$ is solved, we can transform between angle-action variables and ordinary phase-space coordinates.

    Example: 2-d harmonic oscillator

    H(x⃗,p⃗)=12(px2+py2+ωx2x2+ωy2y2)H(\vec x,\vec p)=\frac12\left(p_x^2+p_y^2+\omega_x^2x^2+\omega_y^2y^2\right)H(x,p​)=21​(px2​+py2​+ωx2​x2+ωy2​y2)

    Since

    px=∂S∂x,py=∂S∂yp_x=\frac{\partial S}{\partial x},\quad p_y=\frac{\partial S}{\partial y}px​=∂x∂S​,py​=∂y∂S​

    the Hamilton-Jacobi equation reads

    (∂S∂x)2+(∂S∂y)2+ωx2x2+ωy2y2=2E\left(\frac{\partial S}{\partial x}\right)^2+\left(\frac{\partial S}{\partial y}\right)^2+\omega_x^2x^2+\omega_y^2y^2=2E(∂x∂S​)2+(∂y∂S​)2+ωx2​x2+ωy2​y2=2E

    where $S=S(x,y,\vec J)$. We assume that

    S(x,y,J⃗)=Sx(x,J⃗)+Sy(y,J⃗)S(x,y,\vec J)=S_x(x,\vec J)+S_y(y,\vec J)S(x,y,J)=Sx​(x,J)+Sy​(y,J)

    thus

    (∂Sx∂x)2+ωx2x2=2E−(∂Sy∂y)2−ωy2y2\left(\frac{\partial S_x}{\partial x}\right)^2+\omega_x^2x^2=2E-\left(\frac{\partial S_y}{\partial y}\right)^2-\omega_y^2y^2(∂x∂Sx​​)2+ωx2​x2=2E−(∂y∂Sy​​)2−ωy2​y2

    The left part does not depend on $y$ while the right hand side does not depend on $x$. Therefore, each side should be a constant regardless of $x$ and $y$, and

    K2(J⃗)≡(∂Sx∂x)2+ωx2x2=2E−(∂Sy∂y)2−ωy2y2K^2(\vec J)\equiv\left(\frac{\partial S_x}{\partial x}\right)^2+\omega_x^2x^2=2E-\left(\frac{\partial S_y}{\partial y}\right)^2-\omega_y^2y^2K2(J)≡(∂x∂Sx​​)2+ωx2​x2=2E−(∂y∂Sy​​)2−ωy2​y2

    Consequently

    Sx(x,J⃗)=∣K∣∫xdx′1−ωx2x2K2=K2ωx∫ψdψ′sin⁡2ψ′,where x=−Kωxcos⁡ψ=K22ωx(ψ−12sin⁡2ψ)\begin{align*} S_x(x,\vec J) &=|K|\int^x\text dx'\sqrt{1-\frac{\omega_x^2x^2}{K^2}}\\ &=\frac{K^2}{\omega_x}\int^\psi\text d\psi'\sin^2\psi',\quad \text{where } x=-\frac{K}{\omega_x}\cos\psi\\ &=\frac{K^2}{2\omega_x}\left(\psi-\frac12\sin2\psi\right) \end{align*}Sx​(x,J)​=∣K∣∫xdx′1−K2ωx2​x2​​=ωx​K2​∫ψdψ′sin2ψ′,where x=−ωx​K​cosψ=2ωx​K2​(ψ−21​sin2ψ)​

    Moreover

    px=∂S∂x=∂S∂ψ∂ψ∂x=K22ωx(1−cos⁡2ψ)⋅ωxK=Ksin⁡ψ,K2=(∂Sx∂x)2+ωx2x2=px2+ωx2x2p_x=\frac{\partial S}{\partial x}=\frac{\partial S}{\partial \psi}\frac{\partial \psi}{\partial x}=\frac{K^2}{2\omega_x}\left(1-\cos2\psi\right)\cdot\frac{\omega_x}{K}=K\sin\psi,\quad K^2=\left(\frac{\partial S_x}{\partial x}\right)^2+\omega_x^2x^2=p_x^2+\omega_x^2x^2px​=∂x∂S​=∂ψ∂S​∂x∂ψ​=2ωx​K2​(1−cos2ψ)⋅Kωx​​=Ksinψ,K2=(∂x∂Sx​​)2+ωx2​x2=px2​+ωx2​x2

    so both $x$ and $p_x$ return to their original values when $\psi$ is incremented by $2\pi$. Thus

    Jx(x,px)=ΔS2π=ΔSx2π=K22ωx=px2+ωx2x22ωxJ_x(x,p_x)=\frac{\Delta S}{2\pi}=\frac{\Delta S_x}{2\pi}=\frac{K^2}{2\omega_x}=\frac{p_x^2+\omega_x^2x^2}{2\omega_x}Jx​(x,px​)=2πΔS​=2πΔSx​​=2ωx​K2​=2ωx​px2​+ωx2​x2​

    Similarly

    Jy(y,py)=py2+ωy2y22ωxJ_y(y,p_y)=\frac{p_y^2+\omega_y^2y^2}{2\omega_x}Jy​(y,py​)=2ωx​py2​+ωy2​y2​

    and

    H(J⃗)=ωxJx+ωyJyH(\vec J)=\omega_xJ_x+\omega_yJ_yH(J)=ωx​Jx​+ωy​Jy​
    Ωx=∂H∂Jx=ωx,Ωy=∂H∂Jy=ωy\Omega_x=\frac{\partial H}{\partial J_x}=\omega_x,\quad \Omega_y=\frac{\partial H}{\partial J_y}=\omega_yΩx​=∂Jx​∂H​=ωx​,Ωy​=∂Jy​∂H​=ωy​

    Finally we determine the angle variables

    θx=∂S∂Jx=∂∂Jx[Jx(ψ−12sin⁡2ψ)]=ψ−12sin⁡2ψ+Jx(1−cos⁡2ψ)∂ψ∂Jx=ψ−12sin⁡2ψ+(1−cos⁡2ψ)(∂Jx∂ψ)−1Jx=ψ\begin{align*} \theta_x&=\frac{\partial S}{\partial J_x}=\frac{\partial }{\partial J_x}\left[J_x\left(\psi-\frac12\sin 2\psi\right)\right]\\ &=\psi-\frac12\sin 2\psi+J_x\left(1-\cos 2\psi\right)\frac{\partial \psi}{\partial J_x}\\ &=\psi-\frac12\sin 2\psi+\left(1-\cos 2\psi\right)\left(\frac{\partial J_x}{\partial \psi}\right)^{-1}J_x\\ &=\psi \end{align*}θx​​=∂Jx​∂S​=∂Jx​∂​[Jx​(ψ−21​sin2ψ)]=ψ−21​sin2ψ+Jx​(1−cos2ψ)∂Jx​∂ψ​=ψ−21​sin2ψ+(1−cos2ψ)(∂ψ∂Jx​​)−1Jx​=ψ​

Angle-action variables for spherical potentials

The Hamilton-Jacobi equation for potential $\Phi(r)$ is

E=12[(∂S∂r)2+(1r∂S∂ϑ)2+(1rsin⁡ϑ∂S∂ϕ)2]+Φ(r)=12[(∂Sr∂r)2+(1r∂Sϑ∂ϑ)2+(1rsin⁡ϑ∂Sϕ∂ϕ)2]+Φ(r)\begin{align*} E&=\frac{1}{2}\left[\left(\frac{\partial S}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial S}{\partial \vartheta}\right)^{2}+\left(\frac{1}{r \sin \vartheta} \frac{\partial S}{\partial \phi}\right)^{2}\right]+\Phi(r)\\ &=\frac{1}{2}\left[\left(\frac{\partial S_r}{\partial r}\right)^{2}+\left(\frac{1}{r} \frac{\partial S_\vartheta}{\partial \vartheta}\right)^{2}+\left(\frac{1}{r \sin \vartheta} \frac{\partial S_\phi}{\partial \phi}\right)^{2}\right]+\Phi(r) \end{align*}E​=21​[(∂r∂S​)2+(r1​∂ϑ∂S​)2+(rsinϑ1​∂ϕ∂S​)2]+Φ(r)=21​[(∂r∂Sr​​)2+(r1​∂ϑ∂Sϑ​​)2+(rsinϑ1​∂ϕ∂Sϕ​​)2]+Φ(r)​

and the generalized momenta are

Lz2=(∂Sϕ∂ϕ)2=pϕ2L2−Lz2sin⁡2ϑ=(∂Sϑ∂ϑ)2=pϑ22E−2Φ(r)−L2r2=(∂Sr∂r)2=pr2\begin{aligned} L_{z}^{2} &=\left(\frac{\partial S_{\phi}}{\partial \phi}\right)^{2}=p_{\phi}^{2} \\ L^{2}-\frac{L_{z}^{2}}{\sin ^{2} \vartheta} &=\left(\frac{\partial S_{\vartheta}}{\partial \vartheta}\right)^{2}=p_{\vartheta}^{2} \\ 2 E-2 \Phi(r)-\frac{L^{2}}{r^{2}} &=\left(\frac{\partial S_{r}}{\partial r}\right)^{2}=p_{r}^{2} \end{aligned}Lz2​L2−sin2ϑLz2​​2E−2Φ(r)−r2L2​​=(∂ϕ∂Sϕ​​)2=pϕ2​=(∂ϑ∂Sϑ​​)2=pϑ2​=(∂r∂Sr​​)2=pr2​​

Here we have introduced two separation constants, $L$ and $L_z$ ($L>0,L_z>0$). Then $L$ and $L_z$ prove to be the magnitude and $z$-component of the angular momentum vector. $S$ goes like

S(x⃗,J⃗)=∫0ϕdϕLz+∫π/2ϑdϑϵϑL2−Lz2sin⁡2ϑ+∫rmin⁡rdrϵr2E−2Φ(r)−L2r2\begin{aligned} S(\vec x, \vec J)=\int_{0}^{\phi} \mathrm{d} \phi L_{z} &+\int_{\pi / 2}^{\vartheta} \mathrm{d} \vartheta \epsilon_{\vartheta} \sqrt{L^{2}-\frac{L_{z}^{2}}{\sin ^{2} \vartheta}} \\ &+\int_{r_{\min }}^{r} \mathrm{d} r \epsilon_{r} \sqrt{2 E-2 \Phi(r)-\frac{L^{2}}{r^{2}}} \end{aligned}S(x,J)=∫0ϕ​dϕLz​​+∫π/2ϑ​dϑϵϑ​L2−sin2ϑLz2​​​+∫rmin​r​drϵr​2E−2Φ(r)−r2L2​​​

where $\epsilon_\vartheta$ and $\epsilon_r$ are chosen to be $\pm 1$ such that the integrals in which they appear increase monotonically a long a path over the orbital torus.

  • $J_\phi$ - azimuthal action

    Jϕ=ΔS2π=2πLz2π=LzJ_\phi=\frac{\Delta S}{2\pi}=\frac{2\pi L_z}{2\pi}=L_zJϕ​=2πΔS​=2π2πLz​​=Lz​
  • $J_\vartheta$ - latitudinal action

    Let $\vartheta_{min}$ be the smallest value that $\vartheta$ attains on the orbit, given by

    sin⁡ϑmin⁡=∣Lz∣L,ϑmin⁡≤π2\sin\vartheta_{\min}=\frac{|L_z|}{L},\quad \vartheta_{\min}\le\frac{\pi}{2}sinϑmin​=L∣Lz​∣​,ϑmin​≤2π​

    Then the integration is valid between $\pi/2$ and $\pi-\vartheta_{\min}$, which is a quarter period of the integrand. Thus

    Jϑ=42π∫π/2π−ϑmin⁡dϑL2−Lz2sin⁡2ϑ=L−∣Lz∣J_{\vartheta}=\frac{4}{2\pi}\int_{\pi / 2}^{\pi-\vartheta_{\min}} \mathrm{d} \vartheta \sqrt{L^{2}-\frac{L_{z}^{2}}{\sin ^{2} \vartheta}}=L-|L_z|Jϑ​=2π4​∫π/2π−ϑmin​​dϑL2−sin2ϑLz2​​​=L−∣Lz​∣
  • $J_r$ - radial action

    Jr=22π∫rmin⁡rmax⁡drϵr2E−2Φ(r)−L2r2J_r=\frac{2}{2\pi}\int_{r_{\min }}^{r_{\max}} \mathrm{d} r \epsilon_{r} \sqrt{2 E-2 \Phi(r)-\frac{L^{2}}{r^{2}}}Jr​=2π2​∫rmin​rmax​​drϵr​2E−2Φ(r)−r2L2​​

    An important example - isochrone potential

    Φ=−GMb+b2+r2\Phi=-\frac{GM}{b+\sqrt{b^2+r^2}}Φ=−b+b2+r2​GM​

    Thus

    Jr=GM−2E−12(L+12L2−4GMb)J_{r}=\frac{G M}{\sqrt{-2 E}}-\frac{1}{2}\left(L+\frac{1}{2} \sqrt{L^{2}-4 G M b}\right)Jr​=−2E​GM​−21​(L+21​L2−4GMb​)

    We can rewrite this expression as an equation $H_I=E$

    HI(J⃗)=−(GM)22[Jr+12(L+L2+4GMb)]2(L=Jθ+∣Jϕ∣)H_I(\vec J)=-\frac{(G M)^{2}}{2\left[J_{r}+\frac{1}{2}(L+\sqrt{L^{2}+4 G M b})\right]^{2}} \quad\left(L=J_{\theta}+\left|J_{\phi}\right|\right)HI​(J)=−2[Jr​+21​(L+L2+4GMb​)]2(GM)2​(L=Jθ​+∣Jϕ​∣)

    Differentiating this expression with respect to the actions, we find the frequencies

    Ωr=(GM)2[Jr+12(L+L2+4GMb)]3\Omega_r=\frac{(G M)^{2}}{\left[J_{r}+\frac{1}{2}(L+\sqrt{L^{2}+4 G M b})\right]^{3}}Ωr​=[Jr​+21​(L+L2+4GMb​)]3(GM)2​
    Ωϑ=12(1+LL2+4GMb)Ωr;Ωϕ=sgn⁡(Jϕ)Ωϑ\Omega_{\vartheta}=\frac{1}{2}\left(1+\frac{L}{\sqrt{L^{2}+4 G M b}}\right) \Omega_{r} \quad ; \quad \Omega_{\phi}=\operatorname{sgn}\left(J_{\phi}\right) \Omega_{\vartheta}Ωϑ​=21​(1+L2+4GMb​L​)Ωr​;Ωϕ​=sgn(Jϕ​)Ωϑ​

    In the limit $b\to0$,

    Ωr=Ωϑ=GMa3\Omega_r=\Omega_\vartheta=\sqrt\frac{GM}{a^3}Ωr​=Ωϑ​=a3GM​​

    which recovers the Keplerian orbit.

Previous天体物理动力学NextWeek7: Orbits

Last updated 4 years ago