Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Introduction
  • Mass-to-Light Ratio
  • The Milky Way
  • Larger scale
  • Galaxy Rotation Curves
  • Dark Matter in Galaxy Clusters
  • Virial Mass
  • Hydrostatic Equilibrium
  • Gravitational Lensing
  • Classification
  • Basics
  1. 物理宇宙学基础

Chapter 9 Dark Matter

PreviousChapter 5* Monochromatic Flux, K-correctionNextChapter 10 Recombination and CMB

Last updated 4 years ago

Introduction

  • A mismatch between

    • The amount of matter known (or at least suspected) to be present

    • The amount of matter we see ina given environment or volume

  • Baryonic dark matter

    • Stars & remnants (mostly WDs) account for < 10% of the baryons (deduced from the relative abundances of light elements created in BBN + fluctuations in CMB)

    • In the form of intergalactic gas (Ly $\alpha$ forests)

    • High temperature - WHIM (Warm-Hot Intergalactic Medium), FUV+X ray radiation

  • Non-Baryonic dark matter

Mass-to-Light Ratio

  • In B-band ($\sim3800 \overset\circ{\text{A}}-4800 \overset\circ{\text{A}}$), measured in solar units $\mathrm{M}{\odot} / \mathrm{L}{\odot, \mathrm{B}}$

The Milky Way

LMW,B≃2.3×1010 L⊙,BL_{\mathrm{MW}, \mathrm{B}} \simeq2.3 \times 10^{10}\ \mathrm{L}_{\odot, \mathrm{B}}LMW,B​≃2.3×1010 L⊙,B​
  • Dependence of stellar luminosity on mass (quite steep) $L \propto M^{\sim 3.5}$

  • Most of the luminosity of a stellar population is contributed by the most massive stars $M / L{\mathrm{B}} \sim 10^{-3} \mathrm{M}{\odot} / \mathrm{L}_{\odot, \mathrm{B}}$

  • Most of the mass is in the far more numerous and fainter low-mass stars $M / L{\mathrm{B}} \sim 10^{3} \mathrm{M}{\odot} / \mathrm{L}_{\odot, \mathrm{B}}$

  • Within 1 kpc from the Sun

Larger scale

  • Integrating the luminosity function (LF, the number of galaxies per unit volume with luminosity in the range $[L, L+d L]$) of galaxies within hundreds of Mpc from our location

    • Assumption 1 - the slope in the LF applies for unobserved lower massive galaxies

    • Total stellar luminosity

    • If there are too many low mass galaxies, the integration might diverge

    • Assumption 2 - the mass-to-light ratio in the neighborhood of the solar system also applies to most of the galaxies

    Under these assumptions, the mass density is

Galaxy Rotation Curves

  • Spiral galaxy - thin disk rotating about the center

  • Galaxy rotation curve

    • $v_{\mathrm{r}}(R)$ - velocity deduced from the Doppler shift of spectral lines from stars/gas in the disk

    • $v_{\mathrm{gal}}$ - systemic velocity of the galaxy indicated by the Doppler shift of the nucleus

    • $i$ - inclination deduced from semi-major axis $a$ and semi-minor axis $b$

      • $i=0$ - face on

      • $i=\pi/2$ - edge on

  • Newtonian gravity

    • Inside the bulge, $M(R)\propto R^3$, $v\propto R$

    • Outside the bulge, $M(R)=M$, $v\propto R^{-1/2}$

    • For a distribution of matter in hydrostatic equilibrium, $\rho\sim R^{-2}$, $v=Constant$

  • Evidence of non-baryonic dark matter

    • For most of the spiral galaxies, the rotational velocity first increases with galactic distance $R$ and then flattens

    • The integrated stellar light of the disks of spiral galaxies generally falls exponentially with $R$

      where $I$ is the surface brightness and $R_\text{s}$ is a characteristic scale-length

      • Beyond $R>3R_\text{s}$, only 3% of the light remains - mass of stars inside $R$ becomes essentially constant

      • The gravitational mass continues to increase

    • Dynamical mass of the Milky Way $M{\mathrm{dyn}}^{\mathrm{MW}} \simeq 1 \times 10^{12} \mathrm{M}{\odot}$

      • Based on the motions od satellites orbiting our galaxy

      • High values of $M / L_{\mathrm{B}}$ implied

        which reflect the fact that the Milky Way disk lies at the centre of a spherical halo of non-baryonic dark matter

    • The inner regions (bulges) of spirals and ellipticals are dominated by baryons

    • Dwarf galaxies are dominated by dark matter - has led to searches for gamma-rays produced by the annihilation of particle-antiparticle pairs of some non-baryonic dark matter candidates

    • No evidence for dark matter in globular clusters

Dark Matter in Galaxy Clusters

  • Greatest concentration of matter in the Universe

  • Doppler shifts

    • Systemic redshift

    • Velocity dispersion

Virial Mass

  • Relaxed cluster - no longer expanding nor contracting

    • Velocity dispersion - depth of the gravitational potential well within which dark matter, galaxies and intracluster gas move

  • Virial theorem

    where the brackets denote time averages

    • Kinetic energy

      where

      is a 3-D velocity!

    • Potential energy

      • $\alpha\sim0.4$ - obtained through simulations

      • $r_\text{h}$ - half-mass radius, the radius of a sphere centered on the center of mass of the cluster and within which half of the cluster mass is contained

    • The dynamical mass of a cluster

      where $\sigma_\text{r}$ is the one-dimensional velocity dispersion

    • The mass-to-light ratio of Coma (which has quenched)

      Actually, the Milky Way $\sim10^{12}M_\odot$ has very high star formation efficiency

Hydrostatic Equilibrium

  • Use temperature, density and chemical composition to determine the mass of clusters

  • Equation of hydrostatic equilibrium

    $M$ is the total (DM + baryons) mass inside $r$

    For ideal gas

    where $\mu$ is the mean molecular weight (average mass per particle divided by $m_\ce{H}$, $\sim0.6$ for a fully ionized plasma of solar composition)

  • By tracking $T$, $\rho$ and the composition from the core to the outskirts

  • SZ effect of CMB - from $n_e$ to the abundance of baryons of the intracluster gas

Gravitational Lensing

  • A light ray traversing a region where the gravitational field has a gradient, for example near a point mass, will bend towards the mass

  • Allow us to probe the distribution of matter in galaxies and in clusters independently of the nature of the matter

Classification

  • Depending on the projected distance between the light source and the lens

Strong lensing

  • Occurs at small angular separations between source and lens

  • Einstein rings, multiple images, highly distorted images, arcs

Weak lensing

  • Occurs when the alignment between observer, lens and source is not close

  • Slightly distorted single images of background galaxies

  • Cosmic shear

    • Large-scale distribution of galaxies in the Universe acts as weak lens

    • Analysed by statistical means, averaging over many distorted galaxy images

Microlensing

  • Occurs when two stars (at the appropriate distances from Earth) become closely aligned as seen from Earth due to their relative transverse velocities

  • Usually images cannot be resolved (Subo NB)

  • Give rise to a characteristic light curve - the background source increases in brightness on a timescale of $\sim1$ month

  • Achromatic - no chromatic effects

Basics

  • Assumptions

    • No cosmic shear

      • Assume that the lensing action is dominated by a single matter inhomogeneity at some location between source and observer

    • Thin lens approximation

      • All the action of light deflection takes place at a single distance

      • lens

        • Halo of galaxies $\sim100$ kpc

        • Cluster of galaxies $\sim$ a few Mpc

      • Source-lens and lens-observer distances $\sim$ Gpc

    • Weak field approximation

      • Impact parameter is much greater than the Schwarzchild radius

The Lens Equation

where $\tilde{\alpha}(\xi)$ is the deflection angle

  • Reduced deflection angle

Einstein Radius

  • Under small angle approximation $\xi=\mathrm{D}_{\mathrm{L}} \theta$

    when $\beta=0$

    A ring like image is formed

  • $\beta\lesssim\theta_\rm{E}$ - strong magnification

  • $\beta\gg\theta_\rm{E}$ - little magnification

  • Strong lensing

  • Microlensing of stars in the bulge by a solar-mass disk star, $\mathrm{D}{\mathrm{LS}} / \mathrm{D}{\mathrm{S}} \approx 1 / 2$

Image positions and Magnifications

  • Positions

  • Magnification on fluxes - conserves surface brightness - the ratio between the solid angles sustended by the image and the source

    where $\mu\equiv \beta/\theta_{\mathrm{E}}$

    • $\beta\to0$ - diverge (in the limit of geometrical optics)

    • $\theta<\theta_\rm{E}$ - negative magnification - mirror inverted

    • Total magnification $\mu=|\mu_1|+|\mu_2|>1$

Singular Isothermal Sphere

  • SIS

    • 1-D velocity dispersion of gas and stars is only weakly dependent on distance $r$ fromt the center

    • Treating the galaxy as 'gas' of stars with $p=\rho k T / m$

    • Isothermal

  • 3-D density distribution

    The latter formula is obtained to avoid the singularity in the center, $r_0$ is the core radius

    • $r\ll r0, \rho=\rho\rm{c}$

    • $r\gg r_0$, the SIS behavior is recovered

  • Total mass enclosed within $\xi$

  • The deflection angle

    For cored model

⟨M/LB⟩≈4 M⊙/L⊙,B\left\langle M / L_{\mathrm{B}}\right\rangle \approx 4\ \mathrm{M}_{\odot} / \mathrm{L}_{\odot, \mathrm{B}}⟨M/LB​⟩≈4 M⊙​/L⊙,B​
jstars,B=1.1×108L⊙,B Mpc−3j_{\text {stars,} \mathrm{B}}=1.1 \times 10^{8} \mathrm{L}_{\odot, \mathrm{B}}\ \mathrm{Mpc}^{-3}jstars,B​=1.1×108L⊙,B​ Mpc−3
ρstars,B=1.1×108L⊙,B⋅4M⊙/L⊙,B≈4.4×108M⊙Mpc−3\rho_{\text {stars,} \mathrm{B}}=1.1 \times 10^{8} \mathrm{L}_{\odot, \mathrm{B}} \cdot 4 \mathrm{M}_{\odot} / \mathrm{L}_{\odot, \mathrm{B}} \approx 4.4 \times 10^{8} \mathrm{M}_{\odot} \mathrm{Mpc}^{-3}ρstars,B​=1.1×108L⊙,B​⋅4M⊙​/L⊙,B​≈4.4×108M⊙​Mpc−3
Ωstars≈3×10−3\Omega_{\text{stars}}\approx3\times10^{-3}Ωstars​≈3×10−3
v(R)=vr(R)−vgalsin⁡i=vr(R)−vgal1−b2/a2v(R)=\frac{v_{\mathrm{r}}(R)-v_{\mathrm{gal}}}{\sin i}=\frac{v_{\mathrm{r}}(R)-v_{\mathrm{gal}}}{\sqrt{1-b^{2} / a^{2}}}v(R)=sinivr​(R)−vgal​​=1−b2/a2​vr​(R)−vgal​​
v(R)=GM(R)Rv(R)=\sqrt{\frac{G M(R)}{R}}v(R)=RGM(R)​​
I(R)=I(0)exp⁡(−RRs)I(R)=I(0) \exp \left(-\frac{R}{R_{\mathrm{s}}}\right)I(R)=I(0)exp(−Rs​R​)
⟨M/LB⟩≃50M⊙/L⊙,B(Rhalo100 kpc)\left\langle M / L_{\mathrm{B}}\right\rangle \simeq 50 \mathrm{M}_{\odot} / \mathrm{L}_{\odot, \mathrm{B}}\left(\frac{R_{\mathrm{halo}}}{100\ \mathrm{kpc}}\right)⟨M/LB​⟩≃50M⊙​/L⊙,B​(100 kpcRhalo​​)
−2⟨K⟩=⟨U⟩-2\langle K\rangle=\langle U\rangle−2⟨K⟩=⟨U⟩
K=12M⟨v2⟩K=\frac{1}{2} M\langle v^{2}\rangleK=21​M⟨v2⟩
⟨v2⟩≡1M∑imi∣x˙i∣2\langle v^{2}\rangle \equiv \frac{1}{M} \sum_{i} m_{i}\left|\dot{\mathbf{x}}_{i}\right|^{2}⟨v2⟩≡M1​i∑​mi​∣x˙i​∣2
U=−12G∑i,jj≠imimj∣xj−xi∣=−αGM2rhU=-\frac{1}{2} G \sum_{i, j \atop j \neq i} \frac{m_{i} m_{j}}{\left|\mathbf{x}_{j}-\mathbf{x}_{i}\right|}=-\alpha \frac{G M^{2}}{r_{\mathrm{h}}}U=−21​Gj=ii,j​∑​∣xj​−xi​∣mi​mj​​=−αrh​GM2​
M=⟨v⟩2rhαG∼1.7×1015M⊙(σr1000kms−1)2(rh1Mpc)M=\frac{\langle v\rangle^{2} r_{\mathrm{h}}}{\alpha G}\sim 1.7 \times 10^{15} \mathrm{M}_{\odot}\left(\frac{\sigma_{\mathrm{r}}}{1000 \mathrm{km} \mathrm{s}^{-1}}\right)^{2}\left(\frac{r_{\mathrm{h}}}{1 \mathrm{Mpc}}\right)M=αG⟨v⟩2rh​​∼1.7×1015M⊙​(1000kms−1σr​​)2(1Mpcrh​​)
⟨MLB⟩≈2×1015M⊙8×1012L⊙,B≈250M⊙L⊙,B∼5⟨MLB⟩MW\left\langle\frac{M}{L_{\mathrm{B}}}\right\rangle \approx \frac{2 \times 10^{15} \mathrm{M}_{\odot}}{8 \times 10^{12} \mathrm{L}_{\odot, \mathrm{B}}} \approx \frac{250 \mathrm{M}_{\odot}}{\mathrm{L}_{\odot, \mathrm{B}}}\sim5\left\langle\frac{M}{L_\text{B}}\right\rangle_\text{MW}⟨LB​M​⟩≈8×1012L⊙,B​2×1015M⊙​​≈L⊙,B​250M⊙​​∼5⟨LB​M​⟩MW​
dPdr=−GM(r)ρ(r)r2\frac{d P}{d r}=-G \frac{M(r) \rho(r)}{r^{2}}drdP​=−Gr2M(r)ρ(r)​
P=ρkTμmpP=\frac{\rho k T}{\mu m_{\mathrm{p}}}P=μmp​ρkT​
M(r)=kT(r)rGμmp[−dln⁡ρdln⁡r−dln⁡Tdln⁡r]M(r)=\frac{k T(r) r}{G \mu m_{\mathrm{p}}}\left[-\frac{d \ln \rho}{d \ln r}-\frac{d \ln T}{d \ln r}\right]M(r)=Gμmp​kT(r)r​[−dlnrdlnρ​−dlnrdlnT​]
MhydroComa=(1−2)×1015M⊙∼MvirComa≈2×1015M⊙M_{\mathrm{hydro}}^{\mathrm{Coma}}=(1-2) \times 10^{15} \mathrm{M}_{\odot}\sim M_{\mathrm{vir}}^{\mathrm{Coma}} \approx 2 \times 10^{15} \mathrm{M}_{\odot}MhydroComa​=(1−2)×1015M⊙​∼MvirComa​≈2×1015M⊙​
ξ≫2GMc2\xi \gg \frac{2 G M}{c^{2}}ξ≫c22GM​
α~(ξ)=4GM(ξ)c21ξ\tilde{\alpha}(\xi)=\frac{4 G M(\xi)}{c^{2}} \frac{1}{\xi}α~(ξ)=c24GM(ξ)​ξ1​
α(θ)=DLSDSα~(θ)⇒β=θ−α(θ)\alpha(\theta)=\frac{\mathrm{D}_{\mathrm{LS}}}{\mathrm{D}_{\mathrm{S}}} \tilde{\alpha}(\theta)\Rightarrow\beta=\theta-\alpha(\theta)α(θ)=DS​DLS​​α~(θ)⇒β=θ−α(θ)
β(θ)=θ−DLSDLDS4GMc2θ\beta(\theta)=\theta-\frac{\mathrm{D}_{\mathrm{LS}}}{\mathrm{D}_{\mathrm{L}} \mathrm{D}_{\mathrm{S}}} \frac{4 G M}{c^{2} \theta}β(θ)=θ−DL​DS​DLS​​c2θ4GM​
θE=4GMc2DLSDLDS\theta_{\mathrm{E}}=\sqrt{\frac{4 G M}{c^{2}} \frac{\mathrm{D}_{\mathrm{LS}}}{\mathrm{D}_{\mathrm{L}} \mathrm{D}_{\mathrm{S}}}}θE​=c24GM​DL​DS​DLS​​​
θEarcsec⁡=(M1011.09M⊙)1/2(DLDS/DLSGpc)−1/2\frac{\theta_{\mathrm{E}}}{\operatorname{arcsec}}=\left(\frac{M}{10^{11.09} \mathrm{M}_{\odot}}\right)^{1 / 2}\left(\frac{\mathrm{D}_{\mathrm{L}} \mathrm{D}_{\mathrm{S}} / \mathrm{D}_{\mathrm{LS}}}{\mathrm{Gpc}}\right)^{-1 / 2}arcsecθE​​=(1011.09M⊙​M​)1/2(GpcDL​DS​/DLS​​)−1/2
θE=0.64×10−3arcsec⁡(MM⊙)1/2(DL10 kpc)−1/2\theta_{\mathrm{E}}=0.64 \times 10^{-3} \operatorname{arcsec}\left(\frac{M}{\mathrm{M}_{\odot}}\right)^{1 / 2}\left(\frac{\mathrm{D}_{\mathrm{L}}}{10\ \mathrm{kpc}}\right)^{-1 / 2}θE​=0.64×10−3arcsec(M⊙​M​)1/2(10 kpcDL​​)−1/2
β=θ−θE2θ⇒θ1,2=12(β±β2+4θE2)\beta=\theta-\frac{\theta_{\mathrm{E}}^{2}}{\theta}\Rightarrow \theta_{1,2}=\frac{1}{2}\left(\beta \pm \sqrt{\beta^{2}+4 \theta_{\mathrm{E}}^{2}}\right)β=θ−θθE2​​⇒θ1,2​=21​(β±β2+4θE2​​)
μ=θβdθdβ⇒μ1,2=(1−[θEθ1,2]4)−1=u2+22uu2+4±12\mu=\frac{\theta}{\beta} \frac{d \theta}{d \beta}\Rightarrow \mu_{1,2}=\left(1-\left[\frac{\theta_{\mathrm{E}}}{\theta_{1,2}}\right]^{4}\right)^{-1}=\frac{u^{2}+2}{2 u \sqrt{u^{2}+4}} \pm \frac{1}{2}μ=βθ​dβdθ​⇒μ1,2​=(1−[θ1,2​θE​​]4)−1=2uu2+4​u2+2​±21​
mσ2=kTm\sigma^2=kTmσ2=kT
ρ(r)=σv22πG1r2⇒ρ=ρc1+(rr0)2\rho(r)=\frac{\sigma_{\mathrm{v}}^{2}}{2 \pi G} \frac{1}{r^{2}}\Rightarrow\rho=\frac{\rho_{\mathrm{c}}}{1+\left(\frac{r}{r_{0}}\right)^{2}}ρ(r)=2πGσv2​​r21​⇒ρ=1+(r0​r​)2ρc​​
M(ξ)=πσv2GξM(\xi)=\frac{\pi \sigma_{\mathrm{v}}^{2}}{G} \xiM(ξ)=Gπσv2​​ξ
α~(ξ)=4πc2σv2=1.4′′(σv220 km s−1)2\tilde{\alpha}(\xi)=\frac{4 \pi}{c^{2}} \sigma_{\mathrm{v}}^{2}=1.4^{\prime \prime}\left(\frac{\sigma_{\mathrm{v}}}{220\ \mathrm{km}\ \mathrm{s}^{-1}}\right)^{2}α~(ξ)=c24π​σv2​=1.4′′(220 km s−1σv​​)2
α~(ξ)=4πc2σv2ξ(ξc2+ξ2)1/2\tilde{\alpha}(\xi)=\frac{4 \pi}{c^{2}} \sigma_{\mathrm{v}}^{2} \frac{\xi}{\left(\xi_{\mathrm{c}}^{2}+\xi^{2}\right)^{1 / 2}}α~(ξ)=c24π​σv2​(ξc2​+ξ2)1/2ξ​