Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • General Potential Theory
  • Potential-density pair $\rho\Leftrightarrow \Phi$
  • Potential energy
  • Spherical System
  • Homogeneous Sphere
  • Plummer Sphere
  • Isochrone potential
  • Modified Hubble model
  • Power-law density model
  • Two Power-law density model
  1. 天体物理动力学

Week3: Potential Theory

Confronted with more complex dynamics of stars and galaxies, potential theory comes to the stage.

General Potential Theory

Potential-density pair $\rho\Leftrightarrow \Phi$

The force that matter at position $\vec{x}'$ exerts on a test particle $m$ is

δF⃗(x⃗′)=Gm ρ(x⃗′)d3x⃗′∣x⃗′−x⃗∣3(x⃗′−x⃗),\delta\vec{ F}(\vec{x}') = \frac{Gm\, \rho(\vec{x}') \text{d}^3 \vec{x}' }{|\vec{x}' - \vec{x}|^3}(\vec{x}' - \vec{x}),δF(x′)=∣x′−x∣3Gmρ(x′)d3x′​(x′−x),

Since we would like to study the gravitational field itself, a quantity without test particle involved is preferred. Thus, one can define the gravitational field (force per unit) to be:

g⃗(x⃗)=∫δFm=∫G ρ(x⃗′)d3x⃗′∣x⃗′−x⃗∣3(x⃗′−x⃗).\vec{g}(\vec{x}) = \int \frac{\delta F}{m} = \int \frac{G\, \rho(\vec{x}') \text{d}^3 \vec{x}' }{|\vec{x}' - \vec{x}|^3}(\vec{x}' - \vec{x}).g​(x)=∫mδF​=∫∣x′−x∣3Gρ(x′)d3x′​(x′−x).

Noticing that

∇x⃗(1∣x⃗′−x⃗∣)=x⃗′−x⃗∣x⃗′−x⃗∣3,\nabla_{\vec{x}}\left(\frac{1}{|\vec{x}' - \vec{x}|}\right) = \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3},∇x​(∣x′−x∣1​)=∣x′−x∣3x′−x​,

we have

g⃗(x⃗)=∇x⃗∫d3x⃗′Gρ(x⃗′)∣x⃗′−x⃗∣,\vec{g}(\vec{x}) = \nabla_{\vec{x}} \int \text{d}^3 \vec{x}' \frac{G\rho(\vec{x}')}{|\vec{x}' - \vec{x}|},\\g​(x)=∇x​∫d3x′∣x′−x∣Gρ(x′)​,

let

Φ(x⃗)=−G∫d3x⃗ρ(x⃗′)∣x⃗′−x⃗∣,\Phi(\vec{x}) = -G \int \text{d}^3 \vec{x} \frac{\rho(\vec{x}')}{|\vec{x}' - \vec{x}|},Φ(x)=−G∫d3x∣x′−x∣ρ(x′)​,

we have

g⃗(x⃗)=−∇x⃗Φ(x⃗)=−∇Φ(x⃗).\vec{g}(\vec{x}) = -\nabla_{\vec{x}} \Phi(\vec{x}) = -\nabla \Phi(\vec{x}).g​(x)=−∇x​Φ(x)=−∇Φ(x).

If we take the divergence of gravitational field $\vec{g}(\vec{x})$, we have:

∇x⃗⋅g⃗(x⃗)=∫G ρ(x⃗′)d3x⃗′ ∇x⃗⋅x⃗′−x⃗∣x⃗′−x⃗∣3.\nabla_{\vec{x}}\cdot \vec{g}(\vec{x}) = \int G\, \rho(\vec{x}') \text{d}^3\vec{x}' \, \nabla_{\vec{x}}\cdot \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3}.∇x​⋅g​(x)=∫Gρ(x′)d3x′∇x​⋅∣x′−x∣3x′−x​.

Since we have

∇x⃗⋅x⃗′−x⃗∣x⃗′−x⃗∣3=−3∣x⃗′−x⃗∣3+3(x⃗′−x⃗)⋅(x⃗′−x⃗)∣x⃗′−x⃗∣5,\nabla_{\vec{x}}\cdot \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3} = -\frac{3}{|\vec{x}' - \vec{x}|^3} + \frac{3(\vec{x}' - \vec{x})\cdot(\vec{x}' - \vec{x})}{|\vec{x}' - \vec{x}|^5},∇x​⋅∣x′−x∣3x′−x​=−∣x′−x∣33​+∣x′−x∣53(x′−x)⋅(x′−x)​,

if $\vec{x}'\neq\vec{x}$, $\quad\nabla_{\vec{x}}\cdot \dfrac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3} = 0$.

If $\vec{x}' = \vec{x}$, we have to find another way to calculate the divergence.

∇x⃗⋅g⃗(x⃗)=G∫∣x⃗′−x⃗∣<hρ(x⃗′) ∇x⃗⋅x⃗′−x⃗∣x⃗′−x⃗∣3d3x⃗′=−G∫∣x⃗′−x⃗∣<hρ(x⃗′) ∇x′⃗⋅x⃗′−x⃗∣x⃗′−x⃗∣3d3x⃗′=−Gρ(x⃗)∫∣x⃗′−x⃗∣<hx⃗′−x⃗∣x⃗′−x⃗∣3d2S⃗′ (lim⁡h→0)=−4πGρ(x⃗)\begin{align*} \nabla_{\vec{x}}\cdot \vec{g}(\vec{x}) &= G \int_{|\vec{x}'-\vec{x}|<h} \rho(\vec{x}')\, \nabla_{\vec{x}}\cdot \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3} \text{d}^3\vec{x}'\\ &= -G \int_{|\vec{x}'-\vec{x}|<h} \rho(\vec{x}')\, \nabla_{\vec{x'}}\cdot \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3} \text{d}^3\vec{x}'\\ &= -G\rho(\vec{x}) \int_{|\vec{x}'-\vec{x}|<h} \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3} \text{d}^2\vec{S}'\ \quad (\lim h \to 0)\\ &= -4\pi G\rho(\vec{x}) \end{align*}∇x​⋅g​(x)​=G∫∣x′−x∣<h​ρ(x′)∇x​⋅∣x′−x∣3x′−x​d3x′=−G∫∣x′−x∣<h​ρ(x′)∇x′​⋅∣x′−x∣3x′−x​d3x′=−Gρ(x)∫∣x′−x∣<h​∣x′−x∣3x′−x​d2S′ (limh→0)=−4πGρ(x)​

The last integration corresponds to the total solid angle of a sphere (with radius $h$).

Since $\vec{g}(\vec{x}) = -\nabla_{\vec{x}} \Phi(\vec{x})$, thus

Poisson Equation:∇2Φ(x⃗)=4πGρ(x⃗).\text{Poisson Equation:}\\ \nabla^2 \Phi(\vec{x}) = 4\pi G\rho(\vec{x}).Poisson Equation:∇2Φ(x)=4πGρ(x).

where the subscript $\vec{x}$ is omitted.

Integrate the Poisson Equation, we have the Gaussian Theorem (as an analogue of the Gaussian theorem of EM force):

∫∇Φ⋅dS⃗=4πGM.\int \nabla\Phi \cdot \vec{\text{d}S} = 4\pi GM.∫∇Φ⋅dS=4πGM.

Given a distribution of matter $\rho(\vec{x})$ and a reasonable boundary condition, the gravitational potential $\Phi$ can be solved; and vice versa, given a potential and plug it in the equation above, you can get the matter density distribution. This is called the potential-density pair.

Potential energy

Potential is a proxy for the gravitational field. We would like to obtain the gravitational potential energy of the system (the work that is done to separate/construct the system). Assume we add an infinitesimal test particle $\delta m$ into a field $\Phi(\vec{x})$, the change of potential energy is

δW=Φ(x⃗)δm=∫Φ(x⃗) δρ d3x⃗.\delta W = \Phi(\vec{x})\delta m = \int \Phi(\vec{x})\, \delta \rho\, \text{d}^3\vec{x}.δW=Φ(x)δm=∫Φ(x)δρd3x.

In the meantime, according to Poisson Equation, we introduced a perturbation of density field, thus

∇2(Φ+δΦ)=4πG(ρ+δρ),∇2δΦ=4πGδρ.\nabla^2(\Phi+\delta\Phi) = 4\pi G(\rho+\delta \rho),\\ \nabla^2\delta\Phi = 4\pi G\delta\rho.∇2(Φ+δΦ)=4πG(ρ+δρ),∇2δΦ=4πGδρ.

Thus,

δW=∫Φ(x⃗)δρ d3x⃗=14πG∫Φ(x⃗) ∇2δΦ d3x⃗=14πG∫Φ(x⃗) ∇⋅∇δΦ d3x⃗=14πG∫[∇⋅(Φ∇δΦ)−∇Φ⋅∇δΦ] d3x⃗.\begin{align*} \delta W &= \int\Phi(\vec{x}) \delta \rho\ \text{d}^3\vec{x}\\ &= \frac{1}{4\pi G} \int\Phi(\vec{x})\ \nabla^2\delta\Phi\ \text{d}^3\vec{x}\\ &= \frac{1}{4\pi G} \int\Phi(\vec{x})\ \nabla\cdot\nabla\delta\Phi\ \text{d}^3\vec{x}\\ &= \frac{1}{4\pi G} \int\left[\nabla\cdot(\Phi\nabla\delta\Phi) - \nabla\Phi \cdot \nabla\delta\Phi\right] \ \text{d}^3\vec{x}. \end{align*}δW​=∫Φ(x)δρ d3x=4πG1​∫Φ(x) ∇2δΦ d3x=4πG1​∫Φ(x) ∇⋅∇δΦ d3x=4πG1​∫[∇⋅(Φ∇δΦ)−∇Φ⋅∇δΦ] d3x.​

Take the integral, the surface term (first term) vanished, hence

δW=−14πG∫∇Φ⋅∇δΦ d3x⃗=−14πG∫∇Φ⋅δ∇Φ d3x⃗=−18πG∫δ((∇Φ)2) d3x⃗=−18πGδ∫(∇Φ)2 d3x⃗.\begin{align*} \delta W &= -\frac{1}{4\pi G} \int \nabla\Phi \cdot \nabla\delta\Phi \ \text{d}^3\vec{x}\\ &= -\frac{1}{4\pi G} \int \nabla\Phi \cdot \delta\nabla\Phi \ \text{d}^3\vec{x}\\ &= -\frac{1}{8\pi G} \int \delta\left((\nabla\Phi)^2 \right) \ \text{d}^3\vec{x}\\ &= -\frac{1}{8\pi G} \delta \int (\nabla\Phi)^2 \ \text{d}^3\vec{x}.\\ \end{align*}δW​=−4πG1​∫∇Φ⋅∇δΦ d3x=−4πG1​∫∇Φ⋅δ∇Φ d3x=−8πG1​∫δ((∇Φ)2) d3x=−8πG1​δ∫(∇Φ)2 d3x.​

Hence, the total potential energy of this system is:

W=−18πG∫(∇Φ)2 d3x⃗=−18πG∫∇Φ⋅∇Φ d3x⃗=−18πG∫[∇⋅(Φ∇Φ)−Φ∇2Φ] d3x⃗=18πG∫Φ∇2Φ d3x⃗=12∫ρ Φ d3x⃗.\begin{align*} W &= -\frac{1}{8\pi G} \int (\nabla\Phi)^2 \ \text{d}^3\vec{x}\\ &= -\frac{1}{8\pi G} \int \nabla\Phi \cdot \nabla\Phi \ \text{d}^3\vec{x}\\ &= -\frac{1}{8\pi G} \int \left[\nabla\cdot(\Phi\nabla\Phi) - \Phi\nabla^2\Phi\right] \ \text{d}^3\vec{x}\\ &= \frac{1}{8\pi G} \int \Phi\nabla^2\Phi\ \text{d}^3\vec{x}\\ &= \frac{1}{2}\int \rho\,\Phi\ \text{d}^3\vec{x}. \end{align*}W​=−8πG1​∫(∇Φ)2 d3x=−8πG1​∫∇Φ⋅∇Φ d3x=−8πG1​∫[∇⋅(Φ∇Φ)−Φ∇2Φ] d3x=8πG1​∫Φ∇2Φ d3x=21​∫ρΦ d3x.​

Intuitively, $1/2$ comes from the redundant calculation when enumerating potential energies between every two stars.

TBD: Chandrasekhar potential-energy tensor

Spherical System

For a spherical system, we have Newton's laws:

  1. A body that is inside a spherical shell of matter experiences no net gravitational force from that shell.

  2. The gravitational force on a body that lies outside a spherical shell of matter is the same as it would be if all the shell’s matter were concentrated into a point at its center.

Thus, when calculating the potential at point $\vec{x} < R$, we have:

Φ(r)=−G∫0r4πr′2ρ(r′)dr′r[as if every shell is at the center]−G∫rR4πr′2ρ(r′)dr′r′[the potential inside a shell is constantly −Gdmr′].\begin{align*} \Phi(r) = &-G\int_0^r \frac{4\pi r'^2\rho(r')\text{d}r'}{r} [\text{as if every shell is at the center}] \\&- G\int_r^R \frac{4\pi r'^2\rho(r')\text{d}r'}{r'} [\text{the potential inside a shell is constantly }-\frac{G\text{d}m}{r'}]. \end{align*}Φ(r)=​−G∫0r​r4πr′2ρ(r′)dr′​[as if every shell is at the center]−G∫rR​r′4πr′2ρ(r′)dr′​[the potential inside a shell is constantly −r′Gdm​].​

And the gravitational field is

g⃗(r)=−∫0rGdmr2=−GM(<r)r2.\vec{g}(r) = -\int_0^r \frac{G\text{d}m}{r^2} = -\frac{GM(<r)}{r^2}.g​(r)=−∫0r​r2Gdm​=−r2GM(<r)​.

Circular velocity is defined as

GM(<r)r2=vc2r,vc=GM(<r)r.\frac{GM(<r)}{r^2} = \frac{v_c^2}{r},\quad v_c = \sqrt\frac{GM(<r)}{r}.r2GM(<r)​=rvc2​​,vc​=rGM(<r)​​.

Circular frequency is defined as

Ω=vcr=GM(<r)r3.\Omega = \frac{v_c}{r} = \sqrt{\frac{GM(<r)}{r^3}}.Ω=rvc​​=r3GM(<r)​​.

Escape velocity is defined as

v22+Φ(r)=0,vesc2=2∣Φ(r)∣ (=2GM(<r)r).\frac{v^2}{2} + \Phi(r) = 0,\quad v_{\text{esc}}^2 = 2|\Phi(r)| \ \left(= \frac{2GM(<r)}{r}\right).2v2​+Φ(r)=0,vesc2​=2∣Φ(r)∣ (=r2GM(<r)​).

Homogeneous Sphere

Density is constant, thus

vc=43πGρ r,Tc=2πrvc=3πGρ.v_c = \sqrt{\frac{4}{3}\pi G\rho}\ r,\\ T_c = \frac{2\pi r}{v_c} = \sqrt{\frac{3\pi}{G\rho}}.vc​=34​πGρ​ r,Tc​=vc​2πr​=Gρ3π​​.

Another fun example is: if we dug a hole along the diameter of a homogeneous sphere, put a ball inside that hole from one end, what's the period of that ball?

r¨=−GM(<r)r2=−43πGρ r\ddot r = -\frac{GM(<r)}{r^2} = -\frac{4}{3}\pi G\rho \ rr¨=−r2GM(<r)​=−34​πGρ r

follows the form of harmonic oscillation. Thus the period is

P=3πGρ∼(Gρ)−1/2.P = \sqrt{\frac{3\pi}{G\rho}} \sim (G\rho)^{-1/2}.P=Gρ3π​​∼(Gρ)−1/2.

This time serves as a useful indicator, and is also called dynamical time of a system.

The potential energy (binding energy) is well-known:

W=−35GM2R.W = -\frac{3}{5}\frac{GM^2}{R}.W=−53​RGM2​.

The potential goes as:

Φ(r>R)=−GM(r=R)r,Φ(r<R)=−4πG∫0rr′2ρ dr′r−4πG∫rRr′2ρ dr′r′=−4πGρr23−4πGρ(R22−r22)=−2πGρ(R2−r23).\begin{align*} \Phi(r>R) &= -\frac{GM(r=R)}{r},\\ \Phi(r<R) &= -4\pi G \int_0^r \frac{r'^2\rho\ \text{d}r'}{r} - 4\pi G\int_r^R \frac{ r'^2\rho\ \text{d}r'}{r'}\\ &= - 4\pi G \rho \frac{r^2}{3} - 4\pi G\rho \left(\frac{R^2}{2} - \frac{r^2}{2}\right)\\ &= -2\pi G\rho \left(R^2 - \frac{r^2}{3}\right). \end{align*}Φ(r>R)Φ(r<R)​=−rGM(r=R)​,=−4πG∫0r​rr′2ρ dr′​−4πG∫rR​r′r′2ρ dr′​=−4πGρ3r2​−4πGρ(2R2​−2r2​)=−2πGρ(R2−3r2​).​

When $r\ll R$, the potential is approximately constant, and goes to zero at large radii. Hence the homogeneous sphere model is a good approximation for a constant potential when $r$ is small.

Plummer Sphere

We might expect that in many spherical systems the density is roughly constant near the center, and falls to zero at large radii. Plummer sphere is of this type:

Φ(r)=−GMr2+b2,\Phi(r) = -\frac{GM}{\sqrt{r^2 + b^2}},Φ(r)=−r2+b2​GM​,

where $M$ is the total mass.

We already discussed the potential-density pair, hence density can be calculated as

ρ=14πG∇2Φ=14πG1r2ddrr2ddrΦ=3Mb24π1(r2+b2)5/2=3M4πb3(1+r2b2)−5/2.\begin{align*} \rho &= \frac{1}{4\pi G}\nabla^2\Phi = \frac{1}{4\pi G}\frac{1}{r^2}\frac{\text{d}}{\text{d}r}r^2\frac{\text{d}}{\text{d}r}\Phi\\ &= \frac{3Mb^2}{4\pi}\frac{1}{(r^2 + b^2)^{5/2}} = \frac{3M}{4\pi b^3}\left(1+\frac{r^2}{b^2}\right)^{-5/2}. \end{align*}ρ​=4πG1​∇2Φ=4πG1​r21​drd​r2drd​Φ=4π3Mb2​(r2+b2)5/21​=4πb33M​(1+b2r2​)−5/2.​
r→∞⇒ρ∼r−5r≪b⇒ρ∼const,Φ∼const.\begin{align*} r\to\infty &\Rightarrow \rho\sim r^{-5}\\ r\ll b &\Rightarrow \rho\sim\text{const}, \Phi\sim\text{const}. \end{align*}r→∞r≪b​⇒ρ∼r−5⇒ρ∼const,Φ∼const.​

Hence, $b$ is the core size of this sphere.

Potential energy:

W=12∫ρΦ dV=−12GMb3M4πb3∫0∞(1+r2b2)−34πr2dr=−3πGM232b.\begin{align*} W &= \frac{1}{2} \int \rho\Phi\ \text{d}V \\ &= -\frac{1}{2} \frac{GM}{b} \frac{3M}{4\pi b^3}\int_0^{\infty}\left(1+\frac{r^2}{b^2}\right)^{-3}4\pi r^2\text{d}r\\ &= -\frac{3\pi GM^2}{32b}. \end{align*}W​=21​∫ρΦ dV=−21​bGM​4πb33M​∫0∞​(1+b2r2​)−34πr2dr=−32b3πGM2​.​

Isochrone potential

Φ(r)=−GMb+r2+b2\Phi(r) = -\frac{GM}{b+\sqrt{r^2 + b^2}}Φ(r)=−b+r2+b2​GM​

Modified Hubble model

Ih(R)=2j0a1+R2/a2.I_h(R) = \frac{2j_0 a}{1+R^2/a^2}.Ih​(R)=1+R2/a22j0​a​.

It describes the projected surface density (or brightness), instead of the volume density.

Power-law density model

ρ(r)=ρ0(r0r)α\rho(r) = \rho_0 \left(\frac{r_0}{r}\right)^{\alpha}ρ(r)=ρ0​(rr0​​)α

Example: $\alpha=2$.

The circular velocity is a constant:

vc2=4πGρ0r02.v_c^2 = 4\pi G\rho_0 r_0^2.vc2​=4πGρ0​r02​.

This model is also called "singular isothermal" model.

Two Power-law density model

ρ(r)=ρ0(r/a)α(1+r/a)β−α.\rho(r) = \frac{\rho_0}{(r/a)^{\alpha} (1+r/a)^{\beta-\alpha}}.ρ(r)=(r/a)α(1+r/a)β−αρ0​​.
  • Dehnen models: $\beta = 4$ (reasonable models of the centers of elliptical galaxies)

  • Hernquist model: $\alpha =1, \beta=4$

  • Jaffe model: $\alpha =2, \beta=4$

PreviousWeek4: OrbitsNextWeek2

Last updated 4 years ago