Week3: Potential Theory

Confronted with more complex dynamics of stars and galaxies, potential theory comes to the stage.

General Potential Theory

Potential-density pair $\rho\Leftrightarrow \Phi$

The force that matter at position $\vec{x}'$ exerts on a test particle $m$ is

δF(x)=Gmρ(x)d3xxx3(xx),\delta\vec{ F}(\vec{x}') = \frac{Gm\, \rho(\vec{x}') \text{d}^3 \vec{x}' }{|\vec{x}' - \vec{x}|^3}(\vec{x}' - \vec{x}),

Since we would like to study the gravitational field itself, a quantity without test particle involved is preferred. Thus, one can define the gravitational field (force per unit) to be:

g(x)=δFm=Gρ(x)d3xxx3(xx).\vec{g}(\vec{x}) = \int \frac{\delta F}{m} = \int \frac{G\, \rho(\vec{x}') \text{d}^3 \vec{x}' }{|\vec{x}' - \vec{x}|^3}(\vec{x}' - \vec{x}).

Noticing that

x(1xx)=xxxx3,\nabla_{\vec{x}}\left(\frac{1}{|\vec{x}' - \vec{x}|}\right) = \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3},

we have

g(x)=xd3xGρ(x)xx,\vec{g}(\vec{x}) = \nabla_{\vec{x}} \int \text{d}^3 \vec{x}' \frac{G\rho(\vec{x}')}{|\vec{x}' - \vec{x}|},\\

let

Φ(x)=Gd3xρ(x)xx,\Phi(\vec{x}) = -G \int \text{d}^3 \vec{x} \frac{\rho(\vec{x}')}{|\vec{x}' - \vec{x}|},

we have

g(x)=xΦ(x)=Φ(x).\vec{g}(\vec{x}) = -\nabla_{\vec{x}} \Phi(\vec{x}) = -\nabla \Phi(\vec{x}).

If we take the divergence of gravitational field $\vec{g}(\vec{x})$, we have:

xg(x)=Gρ(x)d3xxxxxx3.\nabla_{\vec{x}}\cdot \vec{g}(\vec{x}) = \int G\, \rho(\vec{x}') \text{d}^3\vec{x}' \, \nabla_{\vec{x}}\cdot \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3}.

Since we have

xxxxx3=3xx3+3(xx)(xx)xx5,\nabla_{\vec{x}}\cdot \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3} = -\frac{3}{|\vec{x}' - \vec{x}|^3} + \frac{3(\vec{x}' - \vec{x})\cdot(\vec{x}' - \vec{x})}{|\vec{x}' - \vec{x}|^5},

if $\vec{x}'\neq\vec{x}$, $\quad\nabla_{\vec{x}}\cdot \dfrac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3} = 0$.

If $\vec{x}' = \vec{x}$, we have to find another way to calculate the divergence.

xg(x)=Gxx<hρ(x)xxxxx3d3x=Gxx<hρ(x)xxxxx3d3x=Gρ(x)xx<hxxxx3d2S (limh0)=4πGρ(x)\begin{align*} \nabla_{\vec{x}}\cdot \vec{g}(\vec{x}) &= G \int_{|\vec{x}'-\vec{x}|<h} \rho(\vec{x}')\, \nabla_{\vec{x}}\cdot \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3} \text{d}^3\vec{x}'\\ &= -G \int_{|\vec{x}'-\vec{x}|<h} \rho(\vec{x}')\, \nabla_{\vec{x'}}\cdot \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3} \text{d}^3\vec{x}'\\ &= -G\rho(\vec{x}) \int_{|\vec{x}'-\vec{x}|<h} \frac{\vec{x}' - \vec{x}}{|\vec{x}' - \vec{x}|^3} \text{d}^2\vec{S}'\ \quad (\lim h \to 0)\\ &= -4\pi G\rho(\vec{x}) \end{align*}

The last integration corresponds to the total solid angle of a sphere (with radius $h$).

Since $\vec{g}(\vec{x}) = -\nabla_{\vec{x}} \Phi(\vec{x})$, thus

Poisson Equation:2Φ(x)=4πGρ(x).\text{Poisson Equation:}\\ \nabla^2 \Phi(\vec{x}) = 4\pi G\rho(\vec{x}).

where the subscript $\vec{x}$ is omitted.

Integrate the Poisson Equation, we have the Gaussian Theorem (as an analogue of the Gaussian theorem of EM force):

ΦdS=4πGM.\int \nabla\Phi \cdot \vec{\text{d}S} = 4\pi GM.

Given a distribution of matter $\rho(\vec{x})$ and a reasonable boundary condition, the gravitational potential $\Phi$ can be solved; and vice versa, given a potential and plug it in the equation above, you can get the matter density distribution. This is called the potential-density pair.

Potential energy

Potential is a proxy for the gravitational field. We would like to obtain the gravitational potential energy of the system (the work that is done to separate/construct the system). Assume we add an infinitesimal test particle $\delta m$ into a field $\Phi(\vec{x})$, the change of potential energy is

δW=Φ(x)δm=Φ(x)δρd3x.\delta W = \Phi(\vec{x})\delta m = \int \Phi(\vec{x})\, \delta \rho\, \text{d}^3\vec{x}.

In the meantime, according to Poisson Equation, we introduced a perturbation of density field, thus

2(Φ+δΦ)=4πG(ρ+δρ),2δΦ=4πGδρ.\nabla^2(\Phi+\delta\Phi) = 4\pi G(\rho+\delta \rho),\\ \nabla^2\delta\Phi = 4\pi G\delta\rho.

Thus,

δW=Φ(x)δρ d3x=14πGΦ(x) 2δΦ d3x=14πGΦ(x) δΦ d3x=14πG[(ΦδΦ)ΦδΦ] d3x.\begin{align*} \delta W &= \int\Phi(\vec{x}) \delta \rho\ \text{d}^3\vec{x}\\ &= \frac{1}{4\pi G} \int\Phi(\vec{x})\ \nabla^2\delta\Phi\ \text{d}^3\vec{x}\\ &= \frac{1}{4\pi G} \int\Phi(\vec{x})\ \nabla\cdot\nabla\delta\Phi\ \text{d}^3\vec{x}\\ &= \frac{1}{4\pi G} \int\left[\nabla\cdot(\Phi\nabla\delta\Phi) - \nabla\Phi \cdot \nabla\delta\Phi\right] \ \text{d}^3\vec{x}. \end{align*}

Take the integral, the surface term (first term) vanished, hence

δW=14πGΦδΦ d3x=14πGΦδΦ d3x=18πGδ((Φ)2) d3x=18πGδ(Φ)2 d3x.\begin{align*} \delta W &= -\frac{1}{4\pi G} \int \nabla\Phi \cdot \nabla\delta\Phi \ \text{d}^3\vec{x}\\ &= -\frac{1}{4\pi G} \int \nabla\Phi \cdot \delta\nabla\Phi \ \text{d}^3\vec{x}\\ &= -\frac{1}{8\pi G} \int \delta\left((\nabla\Phi)^2 \right) \ \text{d}^3\vec{x}\\ &= -\frac{1}{8\pi G} \delta \int (\nabla\Phi)^2 \ \text{d}^3\vec{x}.\\ \end{align*}

Hence, the total potential energy of this system is:

W=18πG(Φ)2 d3x=18πGΦΦ d3x=18πG[(ΦΦ)Φ2Φ] d3x=18πGΦ2Φ d3x=12ρΦ d3x.\begin{align*} W &= -\frac{1}{8\pi G} \int (\nabla\Phi)^2 \ \text{d}^3\vec{x}\\ &= -\frac{1}{8\pi G} \int \nabla\Phi \cdot \nabla\Phi \ \text{d}^3\vec{x}\\ &= -\frac{1}{8\pi G} \int \left[\nabla\cdot(\Phi\nabla\Phi) - \Phi\nabla^2\Phi\right] \ \text{d}^3\vec{x}\\ &= \frac{1}{8\pi G} \int \Phi\nabla^2\Phi\ \text{d}^3\vec{x}\\ &= \frac{1}{2}\int \rho\,\Phi\ \text{d}^3\vec{x}. \end{align*}

Intuitively, $1/2$ comes from the redundant calculation when enumerating potential energies between every two stars.

TBD: Chandrasekhar potential-energy tensor

Spherical System

For a spherical system, we have Newton's laws:

  1. A body that is inside a spherical shell of matter experiences no net gravitational force from that shell.

  2. The gravitational force on a body that lies outside a spherical shell of matter is the same as it would be if all the shell’s matter were concentrated into a point at its center.

Thus, when calculating the potential at point $\vec{x} < R$, we have:

Φ(r)=G0r4πr2ρ(r)drr[as if every shell is at the center]GrR4πr2ρ(r)drr[the potential inside a shell is constantly Gdmr].\begin{align*} \Phi(r) = &-G\int_0^r \frac{4\pi r'^2\rho(r')\text{d}r'}{r} [\text{as if every shell is at the center}] \\&- G\int_r^R \frac{4\pi r'^2\rho(r')\text{d}r'}{r'} [\text{the potential inside a shell is constantly }-\frac{G\text{d}m}{r'}]. \end{align*}

And the gravitational field is

g(r)=0rGdmr2=GM(<r)r2.\vec{g}(r) = -\int_0^r \frac{G\text{d}m}{r^2} = -\frac{GM(<r)}{r^2}.

Circular velocity is defined as

GM(<r)r2=vc2r,vc=GM(<r)r.\frac{GM(<r)}{r^2} = \frac{v_c^2}{r},\quad v_c = \sqrt\frac{GM(<r)}{r}.

Circular frequency is defined as

Ω=vcr=GM(<r)r3.\Omega = \frac{v_c}{r} = \sqrt{\frac{GM(<r)}{r^3}}.

Escape velocity is defined as

v22+Φ(r)=0,vesc2=2Φ(r) (=2GM(<r)r).\frac{v^2}{2} + \Phi(r) = 0,\quad v_{\text{esc}}^2 = 2|\Phi(r)| \ \left(= \frac{2GM(<r)}{r}\right).

Homogeneous Sphere

Density is constant, thus

vc=43πGρ r,Tc=2πrvc=3πGρ.v_c = \sqrt{\frac{4}{3}\pi G\rho}\ r,\\ T_c = \frac{2\pi r}{v_c} = \sqrt{\frac{3\pi}{G\rho}}.

Another fun example is: if we dug a hole along the diameter of a homogeneous sphere, put a ball inside that hole from one end, what's the period of that ball?

r¨=GM(<r)r2=43πGρ r\ddot r = -\frac{GM(<r)}{r^2} = -\frac{4}{3}\pi G\rho \ r

follows the form of harmonic oscillation. Thus the period is

P=3πGρ(Gρ)1/2.P = \sqrt{\frac{3\pi}{G\rho}} \sim (G\rho)^{-1/2}.

This time serves as a useful indicator, and is also called dynamical time of a system.

The potential energy (binding energy) is well-known:

W=35GM2R.W = -\frac{3}{5}\frac{GM^2}{R}.

The potential goes as:

Φ(r>R)=GM(r=R)r,Φ(r<R)=4πG0rr2ρ drr4πGrRr2ρ drr=4πGρr234πGρ(R22r22)=2πGρ(R2r23).\begin{align*} \Phi(r>R) &= -\frac{GM(r=R)}{r},\\ \Phi(r<R) &= -4\pi G \int_0^r \frac{r'^2\rho\ \text{d}r'}{r} - 4\pi G\int_r^R \frac{ r'^2\rho\ \text{d}r'}{r'}\\ &= - 4\pi G \rho \frac{r^2}{3} - 4\pi G\rho \left(\frac{R^2}{2} - \frac{r^2}{2}\right)\\ &= -2\pi G\rho \left(R^2 - \frac{r^2}{3}\right). \end{align*}

When $r\ll R$, the potential is approximately constant, and goes to zero at large radii. Hence the homogeneous sphere model is a good approximation for a constant potential when $r$ is small.

Plummer Sphere

We might expect that in many spherical systems the density is roughly constant near the center, and falls to zero at large radii. Plummer sphere is of this type:

Φ(r)=GMr2+b2,\Phi(r) = -\frac{GM}{\sqrt{r^2 + b^2}},

where $M$ is the total mass.

We already discussed the potential-density pair, hence density can be calculated as

ρ=14πG2Φ=14πG1r2ddrr2ddrΦ=3Mb24π1(r2+b2)5/2=3M4πb3(1+r2b2)5/2.\begin{align*} \rho &= \frac{1}{4\pi G}\nabla^2\Phi = \frac{1}{4\pi G}\frac{1}{r^2}\frac{\text{d}}{\text{d}r}r^2\frac{\text{d}}{\text{d}r}\Phi\\ &= \frac{3Mb^2}{4\pi}\frac{1}{(r^2 + b^2)^{5/2}} = \frac{3M}{4\pi b^3}\left(1+\frac{r^2}{b^2}\right)^{-5/2}. \end{align*}
rρr5rbρconst,Φconst.\begin{align*} r\to\infty &\Rightarrow \rho\sim r^{-5}\\ r\ll b &\Rightarrow \rho\sim\text{const}, \Phi\sim\text{const}. \end{align*}

Hence, $b$ is the core size of this sphere.

Potential energy:

W=12ρΦ dV=12GMb3M4πb30(1+r2b2)34πr2dr=3πGM232b.\begin{align*} W &= \frac{1}{2} \int \rho\Phi\ \text{d}V \\ &= -\frac{1}{2} \frac{GM}{b} \frac{3M}{4\pi b^3}\int_0^{\infty}\left(1+\frac{r^2}{b^2}\right)^{-3}4\pi r^2\text{d}r\\ &= -\frac{3\pi GM^2}{32b}. \end{align*}

Isochrone potential

Φ(r)=GMb+r2+b2\Phi(r) = -\frac{GM}{b+\sqrt{r^2 + b^2}}

Modified Hubble model

Ih(R)=2j0a1+R2/a2.I_h(R) = \frac{2j_0 a}{1+R^2/a^2}.

It describes the projected surface density (or brightness), instead of the volume density.

Power-law density model

ρ(r)=ρ0(r0r)α\rho(r) = \rho_0 \left(\frac{r_0}{r}\right)^{\alpha}

Example: $\alpha=2$.

The circular velocity is a constant:

vc2=4πGρ0r02.v_c^2 = 4\pi G\rho_0 r_0^2.

This model is also called "singular isothermal" model.

Two Power-law density model

ρ(r)=ρ0(r/a)α(1+r/a)βα.\rho(r) = \frac{\rho_0}{(r/a)^{\alpha} (1+r/a)^{\beta-\alpha}}.
  • Dehnen models: $\beta = 4$ (reasonable models of the centers of elliptical galaxies)

  • Hernquist model: $\alpha =1, \beta=4$

  • Jaffe model: $\alpha =2, \beta=4$

Last updated