Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Non-axisymmetric potentials
  • Logarithmic potential
  • Rotating logarithmic potential
  1. 天体物理动力学

Week6: Orbits

PreviousWeek7: OrbitsNextWeek5: Orbits

Last updated 4 years ago

Non-axisymmetric potentials

Logarithmic potential

ΦL(x,y)=12v02ln⁡(Rc2+x2+y2q2),0<q<1\Phi_L(x,y)=\frac12v_0^2\ln\left(R_c^2+x^2+\frac{y^2}{q^2}\right),\quad 0<q<1ΦL​(x,y)=21​v02​ln(Rc2​+x2+q2y2​),0<q<1

Here, the angular momentum no longer conserves, though we still have a conserved Hamiltonian

  • x2+y2q2≪RC2⇒ΦL(x,y)=v02ln⁡Rc+v022Rc2(x2+y2q2)x^2+\frac{y^2}{q^2}\ll R_C^2\Rightarrow \Phi_L(x,y)=v_0^2\ln R_c+\frac{v_0^2}{2R_c^2}\left(x^2+\frac{y^2}{q^2}\right)x2+q2y2​≪RC2​⇒ΦL​(x,y)=v02​lnRc​+2Rc2​v02​​(x2+q2y2​)

    This is just the potential of an harmonic oscillator, and when $q$ is irrational, the orbit does not close

  • x2+y2q2≫RC2⇒ΦL(x,y)=12v02ln⁡(x2+y2q2)x^2+\frac{y^2}{q^2}\gg R_C^2\Rightarrow \Phi_L(x,y)=\frac12v_0^2\ln\left(x^2+\frac{y^2}{q^2}\right)x2+q2y2​≫RC2​⇒ΦL​(x,y)=21​v02​ln(x2+q2y2​)
    • if $q=1$, $\Phi_L=v_0^2\ln R$, and the circular speed is a constant - consistent with the flat circular-speed curves of many disk galaxies

In general, there are two kinds of closed orbits, namely box orbits (above) and loop orbits (below)

  • Box orbits

    • $R\ll R_c$ (oscillator) + could be distorted when $R\gtrsim R_c$,

    • Zero time-averaged angular momentum

    • Two integrals (two independent oscillations parallel to the coordinate axes)

  • Loop orbits

    • $R\gg R_c$

    • Closed loop orbit

      • closes on itself after one revolution

      • zero annular width

Rotating logarithmic potential

Let the frame of reference in which the potential $\Phi$ is static rotate steadily at angular velocity $\vec\Omega_b$ - pattern speed

  • Lagragian

  • Momentum

  • Hamiltonian

    $H_J$ has no explicit time dependence and is thus an integral, called the Jacobi integral

    where

    is the sum of gravitational potential and a centrifugal potential.

  • Hamilton's equations

    thus

    • Coriolis force

    • Centrifugal force

    In the meantime

  • Lagrange points

    When we expand $\nabla \Phi_{eff}$ around one of these points $\vec x_L=(x_L,y_L)$ in powers of $(x-x_L)$ and $(y-y_L)$, we have

    For any bar-like potential whose principal axes lie along the coordinate axes, by symmetry, $\partial^2\Phi_{eff}/\partial x\partial y$ at $x_L$. Hence, if we retain only quadratic terms and define

    and

    the equations of motion become

    This is a pair of linear differential equations with constant coefficients!

    Let

    we have

    The simultaneous equations have a non-trivial solution only if the determinant

    This is the characteristic equation for $\lambda$. If any of the four roots has non-zero real part, $\xi$ and $\eta$ will grow exponetially in time, and the Lagrangian point is said to be unstable. When all roots are pure imaginary, say $\lambda=\pm i\alpha$ or $\pm i\beta$, with $0\le \alpha\le \beta$ real, the general solution is

    and the Lagrangian point is stable since $\xi$ and $\eta$ oscillate. Each orbit is a superposition of motion at frequencies $\alpha$ and $\beta$ around two ellipses.

    Since

    $X_1$ & $Y_1$, $X_2$ & $Y_2$ are related by

    To ensure $\lambda^2$ to be real and negative, there are three conditions

    Now we can analyse the stability of Lagrange points.

    • $L_1$ and $L_2$ - saddle points - unstable

      $\Phi{xx}\Phi{yy}<0$

  • $L3$ - minimum of $\Phi{eff}$ - stable

    $\Phi{xx}>0$ and $\Phi{yy}>0$, so the first two conditions are naturally satisfied. We can rewrite the third condition

    which is also satisfied.

    Without loss of generality, we let

    since $x$-axis is the major axis of the potential.

    Now consider the motion about $L_3$.

    • Since $\alpha^2<\Phi_{xx}$ and $\alpha\ge 0$, we have $Y_1/X_1>0$, thus the star's motion around the $\alpha-$ellipse has the same sense as the rotation of the potential. Such an orbit is said to be prograde or direct.

      When $\Omegab^2\ll |\Phi{xx}|$, $\alpha^2\sim\Phi_{xx}$, so $X_1\gg Y_1$ and this prograde motion runs almost parallel to the long axis of the potential.

  • While $\beta^2>\Phi{yy}$ and $\beta>0$, we have $Y_2/X_2<0$, and the orbital motion is known as retrograde. When $\Omega_b^2\ll |\Phi{yy}|$, similarly $|X_2|\ll|Y_2|$, and the $\beta-$ellipse orbit goes over into a short-axis orbit.

    • A general prograde orbit around $L_3$ is made up of motion on the $\beta-$ellipse (retrograde) around a guiding center moving around the $\alpha-$ellipse (prograde), and conversely for retrograde orbits.

  • $L4,L_5$ - maximum of $\Phi{eff}$ - depends on the details of the potential

    For the Logarithmic potential

    $L_4,L_5$ Occur at $(0,\pm y_L)$, where

    Thus $L_4,L_5$ are present only if $\Omega_b<v_0/(qR_c)$. Differentiating the effective potential again we find

    Hence $\Phi{xx}\Phi{yy}>0$. Deciding whether the other stability conditions hold is tedious in the general case, but straightforward in the limit of negligible core radius,

    Hence

    For future use we note that for small $R_c$, and to leading order in the ellipticity $\epsilon=1-q$, we have

    In this way, when $\epsilon$ and $R_c$ are both small,

    so the $\alpha-$ellipse is highly elongated in the $x-$ direction, while

L=12∣x⃗˙+Ω⃗b×x⃗∣2−Φ(x⃗)\mathcal{L}=\frac12\left|\dot{\vec x}+\vec\Omega_b\times\vec x\right|^2-\Phi(\vec x)L=21​​x˙+Ωb​×x​2−Φ(x)
p⃗=∂L∂x⃗˙=x⃗˙+Ω⃗b×x⃗\vec p=\frac{\partial \mathcal L}{\partial \dot{\vec x}}=\dot{\vec x}+\vec\Omega_b\times\vec xp​=∂x˙∂L​=x˙+Ωb​×x
HJ=p⃗⋅x⃗˙−L=p⃗⋅(p⃗−Ω⃗b×x⃗)−12p2+Φ(x⃗)=12p2+Φ(x⃗)−Ω⃗b⋅(x⃗×p⃗)=H−Ω⃗b×L⃗\begin{align*} H_J&=\vec p\cdot\dot{\vec x}-\mathcal{L}\\ &=\vec p\cdot\left(\vec p-\vec\Omega_b\times \vec x\right)-\frac12p^2+\Phi(\vec x)\\ &=\frac12p^2+\Phi(\vec x)-\vec\Omega_b\cdot(\vec x\times\vec p)\\ &=H-\vec\Omega_b\times\vec L \end{align*}HJ​​=p​⋅x˙−L=p​⋅(p​−Ωb​×x)−21​p2+Φ(x)=21​p2+Φ(x)−Ωb​⋅(x×p​)=H−Ωb​×L​
EJ=12∣x⃗˙∣2+Φeff(x⃗)E_J=\frac12\left|\dot{\vec x}\right|^2+\Phi_{eff}(\vec x)EJ​=21​​x˙​2+Φeff​(x)
Φeff(x⃗)≡Φ(x⃗)−12∣Ω⃗b×x⃗∣2=Φ(x⃗)−12[Ωb2x2−(Ω⃗b⋅x⃗)2]\Phi_{eff}(\vec x)\equiv \Phi(\vec x)-\frac12\left|\vec\Omega_b\times\vec x\right|^2=\Phi(\vec x)-\frac12\left[\Omega_b^2x^2-\left(\vec\Omega_b\cdot \vec x\right)^2\right]Φeff​(x)≡Φ(x)−21​​Ωb​×x​2=Φ(x)−21​[Ωb2​x2−(Ωb​⋅x)2]
{p⃗˙=−∇Φ(x⃗)−Ω⃗b×p⃗x⃗˙=p⃗−Ω⃗b×x⃗⇒x⃗¨=−∇Φ(x⃗)−2Ω⃗b×x⃗˙−Ω⃗b×(Ω⃗b×x⃗)\left\{\begin{array}{l} \dot{\vec p}=-\nabla\Phi(\vec x)-\vec\Omega_b\times\vec p\\ \dot{\vec x}=\vec p-\vec\Omega_b\times \vec x \end{array}\right. \Rightarrow \ddot{\vec x}=-\nabla\Phi(\vec x)-2\vec\Omega_b\times\dot{\vec x}-\vec\Omega_b\times\left(\vec\Omega_b\times\vec x\right){p​˙​=−∇Φ(x)−Ωb​×p​x˙=p​−Ωb​×x​⇒x¨=−∇Φ(x)−2Ωb​×x˙−Ωb​×(Ωb​×x)
x⃗¨=−∇Φ(x⃗)−2Ω⃗b×x⃗˙+Ωb2x⃗−(Ω⃗b⋅x⃗)Ω⃗b\ddot{\vec x}=-\nabla\Phi(\vec x)-2\vec\Omega_b\times\dot{\vec x}+\Omega_b^2\vec x-\left(\vec\Omega_b\cdot\vec x\right)\vec\Omega_bx¨=−∇Φ(x)−2Ωb​×x˙+Ωb2​x−(Ωb​⋅x)Ωb​
−2Ω⃗b×x⃗˙-2\vec\Omega_b\times\dot{\vec x}−2Ωb​×x˙
−Ω⃗b×(Ω⃗b×x⃗)-\vec\Omega_b\times\left(\vec\Omega_b\times\vec x\right)−Ωb​×(Ωb​×x)
x⃗¨=−∇Φeff(x⃗)−2Ω⃗b×x⃗˙\ddot{\vec x}=-\nabla\Phi_{eff}(\vec x)-2\vec\Omega_b\times\dot{\vec x}x¨=−∇Φeff​(x)−2Ωb​×x˙
∇Φeff=0\nabla\Phi_{eff}=0∇Φeff​=0
Φeff(xL,yL)=Φeff(xL,yL)+12∂2Φeff∂x2∣x⃗L(x−xL)2+∂2Φeff∂x∂y∣x⃗L(x−xL)(y−yL)+12∂2Φeff∂y2∣x⃗L(y−yL)2+⋯\Phi_{eff}(x_L,y_L)=\Phi_{eff}(x_L,y_L)+\frac12\frac{\partial^2\Phi_{eff}}{\partial x^2}\Bigg|_{\vec x_L}(x-x_L)^2\\ +\frac{\partial^2\Phi_{eff}}{\partial x\partial y}\Bigg|_{\vec x_L}(x-x_L)(y-y_L)+\frac12\frac{\partial^2\Phi_{eff}}{\partial y^2}\Bigg|_{\vec x_L}(y-y_L)^2+\cdotsΦeff​(xL​,yL​)=Φeff​(xL​,yL​)+21​∂x2∂2Φeff​​​xL​​(x−xL​)2+∂x∂y∂2Φeff​​​xL​​(x−xL​)(y−yL​)+21​∂y2∂2Φeff​​​xL​​(y−yL​)2+⋯
ξ≡x−xL,η≡y−yL\xi\equiv x-x_L,\quad \eta\equiv y-y_Lξ≡x−xL​,η≡y−yL​
Φxx=∂2Φeff∂x2∣x⃗L,Φyy=∂2Φeff∂y2∣x⃗L\Phi_{xx}=\frac{\partial^2\Phi_{eff}}{\partial x^2}\Bigg|_{\vec x_L},\quad \Phi_{yy}=\frac{\partial^2\Phi_{eff}}{\partial y^2}\Bigg|_{\vec x_L}Φxx​=∂x2∂2Φeff​​​xL​​,Φyy​=∂y2∂2Φeff​​​xL​​
ξ¨=2Ωbη˙−Φxxξ,η¨=−2Ωbξ˙−Φyyη\ddot \xi=2\Omega_b\dot\eta-\Phi_{xx}\xi,\quad \ddot \eta=-2\Omega_b\dot\xi-\Phi_{yy}\etaξ¨​=2Ωb​η˙​−Φxx​ξ,η¨​=−2Ωb​ξ˙​−Φyy​η
ξ=Xeλt,η=Yeλt\xi=Xe^{\lambda t},\quad \eta=Ye^{\lambda t}ξ=Xeλt,η=Yeλt
{(λ2+Φxx)X−2λΩbY=02λΩbX+(λ2+Φyy)Y=0\left\{\begin{array}{l} \left(\lambda^2+\Phi_{xx}\right)X-2\lambda\Omega_b Y=0\\ 2\lambda\Omega_b X+\left(\lambda^2+\Phi_{yy}\right)Y=0 \end{array} \right.{(λ2+Φxx​)X−2λΩb​Y=02λΩb​X+(λ2+Φyy​)Y=0​
∣λ2+Φxx−2λΩb2λΩbλ2+Φyy∣=0\left|\begin{array}{cc} \lambda^2+\Phi_{xx}&-2\lambda\Omega_b\\ 2\lambda\Omega_b&\lambda^2+\Phi_{yy} \end{array}\right|=0​λ2+Φxx​2λΩb​​−2λΩb​λ2+Φyy​​​=0
⇔(λ2+Φxx)(λ2+Φyy)+4λ2Ωb2=0\Leftrightarrow \left(\lambda^2+\Phi_{xx}\right)\left(\lambda^2+\Phi_{yy}\right)+4\lambda^2\Omega_b^2=0⇔(λ2+Φxx​)(λ2+Φyy​)+4λ2Ωb2​=0
ξ=X1cos⁡(αt+ϕ1)+X2cos⁡(βt+ϕ2)η=Y1sin⁡(αt+ϕ1)+Y2sin⁡(βt+ϕ2)\xi=X_1\cos\left(\alpha t+\phi_1\right)+X_2\cos\left(\beta t+\phi_2\right)\\ \eta=Y_1\sin\left(\alpha t+\phi_1\right)+Y_2\sin\left(\beta t+\phi_2\right)ξ=X1​cos(αt+ϕ1​)+X2​cos(βt+ϕ2​)η=Y1​sin(αt+ϕ1​)+Y2​sin(βt+ϕ2​)
(α2−Φxx)(α2−Φyy)−4α2Ωb2=0(β2−Φxx)(β2−Φyy)−4β2Ωb2=0\left(\alpha^2-\Phi_{xx}\right)\left(\alpha^2-\Phi_{yy}\right)-4\alpha^2\Omega_b^2=0\\ \left(\beta^2-\Phi_{xx}\right)\left(\beta^2-\Phi_{yy}\right)-4\beta^2\Omega_b^2=0(α2−Φxx​)(α2−Φyy​)−4α2Ωb2​=0(β2−Φxx​)(β2−Φyy​)−4β2Ωb2​=0
Y1=Φxx−α22ΩbαX1=2ΩbαΦyy−α2X1Y2=Φxx−β22ΩbβX2=2ΩbβΦyy−β2X2Y_1=\frac{\Phi_{xx}-\alpha^2}{2\Omega_b\alpha}X_1=\frac{2\Omega_b\alpha}{\Phi_{yy}-\alpha^2}X_1\\ Y_2=\frac{\Phi_{xx}-\beta^2}{2\Omega_b\beta}X_2=\frac{2\Omega_b\beta}{\Phi_{yy}-\beta^2}X_2Y1​=2Ωb​αΦxx​−α2​X1​=Φyy​−α22Ωb​α​X1​Y2​=2Ωb​βΦxx​−β2​X2​=Φyy​−β22Ωb​β​X2​
λ12λ22=ΦxxΦyy>0\lambda_1^2\lambda_2^2=\Phi_{xx}\Phi_{yy}>0λ12​λ22​=Φxx​Φyy​>0
λ12+λ22=−(Φxx+Φyy+4Ωb2)<0\lambda_1^2+\lambda_2^2=-\left(\Phi_{xx}+\Phi_{yy}+4\Omega_b^2\right)<0λ12​+λ22​=−(Φxx​+Φyy​+4Ωb2​)<0
Δ=(Φxx+Φyy+4Ωb2)2−4ΦxxΦyy>0\Delta=\left(\Phi_{xx}+\Phi_{yy}+4\Omega_b^2\right)^2-4\Phi_{xx}\Phi_{yy}>0Δ=(Φxx​+Φyy​+4Ωb2​)2−4Φxx​Φyy​>0

(Φxx−Φyy)2+8(Φxx+Φyy)Ωb2+16Ωb4>0\left(\Phi_{xx}-\Phi_{yy}\right)^2+8\left(\Phi_{xx}+\Phi_{yy}\right)\Omega_b^2+16\Omega_b^4>0(Φxx​−Φyy​)2+8(Φxx​+Φyy​)Ωb2​+16Ωb4​>0
Φxx<Φyy\Phi_{xx}<\Phi_{yy}Φxx​<Φyy​
Φeff(x,y)=12v02ln⁡(Rc2+x2+y2q2)−12Ωb2(x2+y2),0<q<1\Phi_{eff}(x,y)=\frac12v_0^2\ln\left(R_c^2+x^2+\frac{y^2}{q^2}\right)-\frac12\Omega_b^2(x^2+y^2),\quad 0<q<1Φeff​(x,y)=21​v02​ln(Rc2​+x2+q2y2​)−21​Ωb2​(x2+y2),0<q<1
0=∂∂yΦeff(0,±yL)=±(v02q2Rc2+yL2−Ωb2)yL0=\frac{\partial}{\partial y}\Phi_{eff}(0,\pm y_L)=\pm\left(\frac{v_0^2}{q^2R_c^2+y_L^2}-\Omega^2_b\right)y_L0=∂y∂​Φeff​(0,±yL​)=±(q2Rc2​+yL2​v02​​−Ωb2​)yL​
⇒yL=v02Ωb2−q2Rc2\Rightarrow y_L=\sqrt{\frac{v_0^2}{\Omega^2_b}-q^2R_c^2}⇒yL​=Ωb2​v02​​−q2Rc2​​
Φxx(0,yL)=−Ωb2(1−q2)Φyy(0,yL)=−2Ωb2[1−q2(ΩbRcv0)2]\Phi_{xx}(0,y_L)=-\Omega_b^2(1-q^2)\\ \Phi_{yy}(0,y_L)=-2\Omega_b^2\left[1-q^2\left(\frac{\Omega_bR_c}{v_0}\right)^2\right]Φxx​(0,yL​)=−Ωb2​(1−q2)Φyy​(0,yL​)=−2Ωb2​[1−q2(v0​Ωb​Rc​​)2]
ΩbRcv0≪1\frac{\Omega_bR_c}{v_0}\ll 1v0​Ωb​Rc​​≪1
⇒Φxx+Φyy+4Ωb2=Ωb2(1+q2),ΦxxΦyy=2Ωb4(1−q2)\Rightarrow \Phi_{xx}+\Phi_{yy}+4\Omega_b^2=\Omega_b^2(1+q^2),\quad \Phi_{xx}\Phi_{yy}=2\Omega_b^4(1-q^2)⇒Φxx​+Φyy​+4Ωb2​=Ωb2​(1+q2),Φxx​Φyy​=2Ωb4​(1−q2)
Φxx+Φyy+4Ωb2>0Δ=Ωb4(q4+10q2−7)>0  ⟺  q2>42−5≈0.8102\Phi_{xx}+\Phi_{yy}+4\Omega_b^2>0\\ \Delta=\Omega_b^4\left(q^4+10q^2-7\right)>0\iff q^2>4\sqrt{2}-5\approx0.810^2Φxx​+Φyy​+4Ωb2​>0Δ=Ωb4​(q4+10q2−7)>0⟺q2>42​−5≈0.8102
Φxx+Φyy+4Ωb2=Ωb2(1+q2)≈Ωb2(2−2ϵ)ΦxxΦyy=2Ωb4(1−q2)≈4Ωb4ϵ\Phi_{xx}+\Phi_{yy}+4\Omega_b^2=\Omega_b^2(1+q^2)\approx\Omega_b^2(2-2\epsilon)\\ \quad \Phi_{xx}\Phi_{yy}=2\Omega_b^4(1-q^2)\approx 4\Omega_b^4\epsilon\\Φxx​+Φyy​+4Ωb2​=Ωb2​(1+q2)≈Ωb2​(2−2ϵ)Φxx​Φyy​=2Ωb4​(1−q2)≈4Ωb4​ϵ
⇒Δ≈4Ωb4(1−6ϵ),Δ≈2Ωb2(1−3ϵ)\Rightarrow \Delta\approx4\Omega_b^4\left(1-6\epsilon\right),\quad \sqrt\Delta\approx2\Omega_b^2\left(1-3\epsilon\right)⇒Δ≈4Ωb4​(1−6ϵ),Δ​≈2Ωb2​(1−3ϵ)
α2=Φxx+Φyy+4Ωb2−Δ2≈2ϵΩb2≈−Φxxβ2=Φxx+Φyy+4Ωb2+Δ2≈2(1−2ϵ)Ωb2=2Ωb2+O(ϵ)\alpha^2=\frac{\Phi_{xx}+\Phi_{yy}+4\Omega_b^2-\sqrt{\Delta}}{2}\approx2\epsilon\Omega_b^2\approx-\Phi_{xx}\\ \beta^2=\frac{\Phi_{xx}+\Phi_{yy}+4\Omega_b^2+\sqrt{\Delta}}{2}\approx2(1-2\epsilon)\Omega_b^2=2\Omega_b^2+\mathcal{O}(\epsilon)α2=2Φxx​+Φyy​+4Ωb2​−Δ​​≈2ϵΩb2​≈−Φxx​β2=2Φxx​+Φyy​+4Ωb2​+Δ​​≈2(1−2ϵ)Ωb2​=2Ωb2​+O(ϵ)
Y1≈−4ϵΩb222ϵΩb2X1≈−2ϵX1⇒Y1≫X1Y_1\approx\frac{-4\epsilon\Omega_b^2}{2\sqrt{2\epsilon}\Omega_b^2}X_1\approx-\sqrt{2\epsilon}X_1\Rightarrow Y_1\gg X_1Y1​≈22ϵ​Ωb2​−4ϵΩb2​​X1​≈−2ϵ​X1​⇒Y1​≫X1​
Y2≈−[2ϵ+2(1−2ϵ)]Ωb222(1−2ϵ)Ωb2X2≈−X2/2Y_2\approx\frac{-\left[2\epsilon+2(1-2\epsilon)\right]\Omega_b^2}{2\sqrt{2(1-2\epsilon)}\Omega_b^2}X_2\approx-X_2/\sqrt2Y2​≈22(1−2ϵ)​Ωb2​−[2ϵ+2(1−2ϵ)]Ωb2​​X2​≈−X2​/2​