Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Monochromatic flux
  • K-correction
  • Surface brightness
  • Blackbody radiation
  1. 物理宇宙学基础

Chapter 5* Monochromatic Flux, K-correction

Monochromatic flux

  • Difficult to measure bolometric luminosity - Astronomers use filters

  • A photon with observed frequency $\nu$ has higher frequency $(1+z)\nu$ when emitted

    Fνdν=L(1+z)ν4πDL2d(1+z)ν=(1+z)L(1+z)ν4πDL2dνF_{\nu} \mathrm{d} \nu=\frac{L_{(1+z) \nu}}{4 \pi D_{L}^{2}} \mathrm{d}(1+z) \nu=(1+z) \frac{L_{(1+z) \nu}}{4 \pi D_{L}^{2}} \mathrm{d} \nuFν​dν=4πDL2​L(1+z)ν​​d(1+z)ν=(1+z)4πDL2​L(1+z)ν​​dν
    Fλdλ=Lλ/(1+z)4πDL2dλ/(1+z)=11+zLλ/(1+z)4πDL2dλF_{\lambda} \mathrm{d} \lambda=\frac{L_{\lambda /(1+z)}}{4 \pi D_{L}^{2}} \mathrm{d} \lambda /(1+z)=\frac{1}{1+z} \frac{L_{\lambda /(1+z)}}{4 \pi D_{L}^{2}} \mathrm{d} \lambdaFλ​dλ=4πDL2​Lλ/(1+z)​​dλ/(1+z)=1+z1​4πDL2​Lλ/(1+z)​​dλ

    We see the monochromatic flux is not related to the $\nu$ or $\lambda$ we receive

    Introduce the intrinsic flux

    Fλ,intrin=Lλ4πDL2F_{\lambda, \text {intrin}}=\frac{L_{\lambda}}{4 \pi D_{L}^{2}}Fλ,intrin​=4πDL2​Lλ​​

    we have

    Fλ=Fλ,intrin1+zLλ/(1+z)LλF_\lambda=\frac{F_{\lambda, \text {intrin}}}{1+z}\frac{L_{\lambda /(1+z)}}{L_{\lambda}}Fλ​=1+zFλ,intrin​​Lλ​Lλ/(1+z)​​

K-correction

  • Assume we use B band to calculate the distance module (DM) of a star

    mintrin=−2.5log⁡Fλ,intrin+Const =M+DMm_{i n t r i n}=-2.5 \log F_{\lambda, i n t r i n}+\text {Const }=M+D Mmintrin​=−2.5logFλ,intrin​+Const =M+DM

    But for observation, the apparent magnitude is $m$ rather than $m_{intrin}$

    m=M+DM+Km=M+D M+Km=M+DM+K

    where $K$ is the K-correction

    K(z,λ)=−2.5log⁡[11+zLλ/(1+z)Lλ]K(z,ν)=−2.5log⁡[(1+z)L(1+z)νLν]\begin{array}{c}{K(z, \lambda)=-2.5 \log \left[\frac{1}{1+z} \frac{L_{\lambda /(1+z)}}{L_{\lambda}}\right]} \\ {K(z, \nu)=-2.5 \log \left[(1+z) \frac{L_{(1+z) \nu}}{L_{\nu}}\right]}\end{array}K(z,λ)=−2.5log[1+z1​Lλ​Lλ/(1+z)​​]K(z,ν)=−2.5log[(1+z)Lν​L(1+z)ν​​]​

    (not reliable for $z>1$)

Surface brightness

  • Define surface brightness as

    μ=fπθ2=fdA2πD2\mu=\frac{f}{\pi\theta^2}=\frac{fd_A^2}{\pi D^2}μ=πθ2f​=πD2fdA2​​

    where $f$ is the observed flux, $\theta$ is the angular extension $D/d_A$

    Note that

    f=L4πdL2,dA=dL(1+z)2f=\frac{L}{4\pi d_L^2},\quad d_A=\frac{d_L}{(1+z)^2}f=4πdL2​L​,dA​=(1+z)2dL​​

    we have

    μ=L4π2D2(1+z)4=μ0(1+z)4\mu=\frac{L}{4\pi^2D^2(1+z)^4}=\frac{\mu_0}{(1+z)^4}μ=4π2D2(1+z)4L​=(1+z)4μ0​​
  • For objects with high redshift, the surface brightness declines rapidly

  • Similarly, we ca consider the bolometric and monochromatic fluxes

    μbol,obs=μbol,em(1+z)4\mu_{bol,obs}=\frac{\mu_{bol,em}}{(1+z)^4}μbol,obs​=(1+z)4μbol,em​​
    μν=μ(1+z)ν(1+z)3,μλ=μλ/(1+z)(1+z)5\mu_{\nu}=\frac{\mu_{(1+z)\nu}}{(1+z)^3},\quad \mu_{\lambda}=\frac{\mu_{\lambda/(1+z)}}{(1+z)^5}μν​=(1+z)3μ(1+z)ν​​,μλ​=(1+z)5μλ/(1+z)​​

    This is used in the Tolman Test, which is consistent with the results from the RW metric

Blackbody radiation

  • Consider the emitted and the observed intensity (with is proportional to the surface brightness under isotropic assumption) with temperature $T$

    Iν,em=2hν3c21exp⁡(hνkT)−1I_{\nu, e m}=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{\exp \left(\frac{h \nu}{k T}\right)-1}Iν,em​=c22hν3​exp(kThν​)−11​
    Iν,obs=2h(ν(1+z))3c21exp⁡(hν(1+z)kT)−11(1+z)3=2hν3c21exp⁡(hνkT/(1+z))−1\begin{align*} I_{\nu, obs}&=\frac{2 h (\nu(1+z))^{3}}{c^{2}} \frac{1}{\exp \left(\frac{h \nu(1+z)}{k T}\right)-1}\frac{1}{(1+z)^3}\\ &=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{\exp \left(\frac{h \nu}{k T/(1+z)}\right)-1} \end{align*}Iν,obs​​=c22h(ν(1+z))3​exp(kThν(1+z)​)−11​(1+z)31​=c22hν3​exp(kT/(1+z)hν​)−11​​
  • We see that it is still a blackbody spectrum, while the observed temperature is lower by a factor of $(1+z)$

  • For CMB, $T_{obs}=2.73\text{ K}$, and back in the era of decoupling, $T\sim300\text{ K}$

    zem≈1100z_{em}\approx1100zem​≈1100
PreviousChapter 1 IntroductionNextChapter 9 Dark Matter

Last updated 4 years ago