Chapter 5* Monochromatic Flux, K-correction

Monochromatic flux

  • Difficult to measure bolometric luminosity - Astronomers use filters

  • A photon with observed frequency $\nu$ has higher frequency $(1+z)\nu$ when emitted

    Fνdν=L(1+z)ν4πDL2d(1+z)ν=(1+z)L(1+z)ν4πDL2dνF_{\nu} \mathrm{d} \nu=\frac{L_{(1+z) \nu}}{4 \pi D_{L}^{2}} \mathrm{d}(1+z) \nu=(1+z) \frac{L_{(1+z) \nu}}{4 \pi D_{L}^{2}} \mathrm{d} \nu
    Fλdλ=Lλ/(1+z)4πDL2dλ/(1+z)=11+zLλ/(1+z)4πDL2dλF_{\lambda} \mathrm{d} \lambda=\frac{L_{\lambda /(1+z)}}{4 \pi D_{L}^{2}} \mathrm{d} \lambda /(1+z)=\frac{1}{1+z} \frac{L_{\lambda /(1+z)}}{4 \pi D_{L}^{2}} \mathrm{d} \lambda

    We see the monochromatic flux is not related to the $\nu$ or $\lambda$ we receive

    Introduce the intrinsic flux

    Fλ,intrin=Lλ4πDL2F_{\lambda, \text {intrin}}=\frac{L_{\lambda}}{4 \pi D_{L}^{2}}

    we have

    Fλ=Fλ,intrin1+zLλ/(1+z)LλF_\lambda=\frac{F_{\lambda, \text {intrin}}}{1+z}\frac{L_{\lambda /(1+z)}}{L_{\lambda}}

K-correction

  • Assume we use B band to calculate the distance module (DM) of a star

    mintrin=2.5logFλ,intrin+Const =M+DMm_{i n t r i n}=-2.5 \log F_{\lambda, i n t r i n}+\text {Const }=M+D M

    But for observation, the apparent magnitude is $m$ rather than $m_{intrin}$

    m=M+DM+Km=M+D M+K

    where $K$ is the K-correction

    K(z,λ)=2.5log[11+zLλ/(1+z)Lλ]K(z,ν)=2.5log[(1+z)L(1+z)νLν]\begin{array}{c}{K(z, \lambda)=-2.5 \log \left[\frac{1}{1+z} \frac{L_{\lambda /(1+z)}}{L_{\lambda}}\right]} \\ {K(z, \nu)=-2.5 \log \left[(1+z) \frac{L_{(1+z) \nu}}{L_{\nu}}\right]}\end{array}

    (not reliable for $z>1$)

Surface brightness

  • Define surface brightness as

    μ=fπθ2=fdA2πD2\mu=\frac{f}{\pi\theta^2}=\frac{fd_A^2}{\pi D^2}

    where $f$ is the observed flux, $\theta$ is the angular extension $D/d_A$

    Note that

    f=L4πdL2,dA=dL(1+z)2f=\frac{L}{4\pi d_L^2},\quad d_A=\frac{d_L}{(1+z)^2}

    we have

    μ=L4π2D2(1+z)4=μ0(1+z)4\mu=\frac{L}{4\pi^2D^2(1+z)^4}=\frac{\mu_0}{(1+z)^4}
  • For objects with high redshift, the surface brightness declines rapidly

  • Similarly, we ca consider the bolometric and monochromatic fluxes

    μbol,obs=μbol,em(1+z)4\mu_{bol,obs}=\frac{\mu_{bol,em}}{(1+z)^4}
    μν=μ(1+z)ν(1+z)3,μλ=μλ/(1+z)(1+z)5\mu_{\nu}=\frac{\mu_{(1+z)\nu}}{(1+z)^3},\quad \mu_{\lambda}=\frac{\mu_{\lambda/(1+z)}}{(1+z)^5}

    This is used in the Tolman Test, which is consistent with the results from the RW metric

Blackbody radiation

  • Consider the emitted and the observed intensity (with is proportional to the surface brightness under isotropic assumption) with temperature $T$

    Iν,em=2hν3c21exp(hνkT)1I_{\nu, e m}=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{\exp \left(\frac{h \nu}{k T}\right)-1}
    Iν,obs=2h(ν(1+z))3c21exp(hν(1+z)kT)11(1+z)3=2hν3c21exp(hνkT/(1+z))1\begin{align*} I_{\nu, obs}&=\frac{2 h (\nu(1+z))^{3}}{c^{2}} \frac{1}{\exp \left(\frac{h \nu(1+z)}{k T}\right)-1}\frac{1}{(1+z)^3}\\ &=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{\exp \left(\frac{h \nu}{k T/(1+z)}\right)-1} \end{align*}
  • We see that it is still a blackbody spectrum, while the observed temperature is lower by a factor of $(1+z)$

  • For CMB, $T_{obs}=2.73\text{ K}$, and back in the era of decoupling, $T\sim300\text{ K}$

    zem1100z_{em}\approx1100

Last updated