Chapter 7 Thermal History of the Universe

Intro

Average density of photons

  • The total energy density of a black body is

    u=aT4u=aT^4

    where $a={4\sigma}/{c}=7.57\times10^{-15}\text{ erg}\text{ cm}^{-3}\text{ K}^{-4}$ is the radiation constant

  • Average energy of a photon (black body)

    u=hνBν(T)dνBν(T)dν=2.70kT\langle u\rangle=\frac{\int h\nu B_\nu(T)\text d\nu}{\int B_\nu(T)\text d\nu}=2.70 k T

where $k=1.38 \times 10^{-16} \text { erg } \mathrm{K}^{-1}$ is Boltzmann constant

  • Number density of CMB photons (which make up most of the photons at present) today

    nγ,0=uu=a2.70kT3=4.1×102cm3n_{\gamma, 0}=\frac{u}{\langle u\rangle}=\frac{a}{2.70 k} T^{3}=4.1 \times 10^{2} \mathrm{cm}^{-3}

Average density of baryons

nb,0=Ωb,0ρcritmb=0.04888.5×1030gcm31.67×1024g=2.5×107cm3n_{\mathrm{b}, 0}=\frac{\Omega_{\mathrm{b}, 0} \cdot \rho_{\mathrm{crit}}}{\left\langle m_{\mathrm{b}}\right\rangle}=\frac{0.0488 \cdot 8.5 \times 10^{-30} \mathrm{g}\cdot \mathrm{cm}^{-3}}{1.67 \times 10^{-24} \mathrm{g}}=2.5 \times 10^{-7} \mathrm{cm}^{-3}
  • $\Omega_{\text b,0}=0.0488$, which is a small fraction compared to the dark matter

Density ratio of photons and baryons

  • Number density

    nb,0nγ,0=6.1×1010\frac{n_{\mathrm{b}, 0}}{n_{\gamma, 0}}=6.1 \times 10^{-10}
  • Energy density

    ub,0uγ,0=nbnγmbc2u=9.0×102\frac{u_{\mathrm{b}, 0}}{u_{\gamma, 0}}=\frac{n_{\mathrm{b}}}{n_{\gamma}} \frac{\left\langle m_{\mathrm{b}}\right\rangle c^{2}}{\langle u\rangle}=9.0 \times 10^{2}

    If we include non-relativistic cold dark matter (matter) and relativistic neutrinos (radiation)

    um,0urad,03.4×103\frac{u_{\mathrm{m}, 0}}{u_{\mathrm{rad}, 0}} \simeq 3.4 \times 10^{3}

    So the present universe is matter dominated

  • However, in the past, since

    ρm=ρ0(1+z)3ρrad=ρ0(1+z)4\rho_{\mathrm{m}}=\rho_{0}(1+z)^{3}\\ \rho_{\mathrm{rad}}=\rho_{0}(1+z)^{4}

    we find the redshift that these two density equal

    zeq3370z_{eq}\approx3370

    before which the radiation dominated

The evolution of temperature

  • $\lambda_{max}T$ is a constant

    TCMB=2.73(1+z) K=2.73a1 KT_\text{CMB}=2.73(1+z)\text{ K}=2.73a^{-1}\text{ K}
  • At early universe, the typical photons were sufficiently energetic that they interacted strongly with matter - the temperature was dominated by the radiation

    The evolution of scale factor

    a(t)=tt0t(s)=(T1.5×1010 K)2=(T1.3 MeV)2a(t)=\sqrt{\frac{t}{t_0}}\Rightarrow t(\mathrm{s})=\left(\frac{T}{1.5 \times 10^{10}\ \mathrm{K}}\right)^{-2}=\left(\frac{T}{1.3\ \mathrm{MeV}}\right)^{-2}

The Universe at $t<1\text{ s}$

Planck time

  • According to the formula

    T=2.73/a (K)T=2.73/a\ (\text{K})

    $T$ diverges as $a\to\infty$

  • This extrapolation fails when the wavelength associated with the particle approaches its Schiwarzschild radius

    λ=2πmc=πrs=2πGmc2\lambda=\frac{2\pi\hbar}{mc}=\pi r_s=\frac{2\pi Gm}{c^2}
    • Planck mass

      mP=(cG)1/21019 GeVm_{\mathrm{P}}=\left(\frac{\hbar c}{G}\right)^{1 / 2} \simeq 10^{19}\ \mathrm{GeV}
    • Planck length

      lP=mPc=(Gc3)1/21033 cml_{\mathrm{P}}=\frac{\hbar}{m_{\mathrm{P}} c}=\left(\frac{\hbar G}{c^{3}}\right)^{1 / 2} \simeq 10^{-33}\ \mathrm{cm}
    • Planck time

      tP=lPc=(Gc5)1/21043 st_{\mathrm{P}}=\frac{l_{\mathrm{P}}}{c}=\left(\frac{\hbar G}{c^{5}}\right)^{1 / 2} \simeq 10^{-43}\ \mathrm{s}

      At $t\approx t_P$, classical spacetime dissolves into a foam of quantum black holes - Quantum gravity limit

Freeze-out

  • Interaction rate (1/s): $\Gamma$

  • Expansion rate of the universe: $H$

    • If $\Gamma\gg H$, then the timescale of particle interactions is much smaller than the characteristic expansion timescale

      tc=1ΓtH=1Ht_{\mathrm{c}}=\frac{1}{\Gamma} \ll t_{\mathrm{H}}=\frac{1}{H}

      and local thermal equilibrium is built

    • If $tc\sim t\ce{H}$

      The particles in question decouple from the thermal plasma

Major milestones

Planck time $t\sim10^{-43}\text{ s}$

  • Four fundamental interactions were united before Planck time

  • Gravity became separate from the other three forces

  • Beginning of GUT era

GUT transition $t \sim 10^{-35} \mathrm{s}$

T1027 K1014 GeVT \sim 10^{27}\ \mathrm{K} \simeq 10^{14}\ \mathrm{GeV}
  • The Electroweak and Strong forces emerged

  • Quarks (that interact mostly through the strong force) and leptons (which interact mostly through the weak force) and their anti-particles acquired individual identities

End of GUT era

Inflation $t\sim10^{-36}-10^{-34}\text{ s}$

  • Horizon problem (causal link)

  • Flatness problem

  • Monopole problem

Baryogenesis

  • Absence of anti-matter

Electro-Weak transition $t \sim 10^{-12} \mathrm{s}$

T1015 K100 GeVT \sim 10^{15}\ \mathrm{K} \simeq 100\ \mathrm{GeV}
  • The electromagnetic and weak forces become separate

  • Leptons acquired mass

  • Corresponding bosons appeared (and decayed at the temperature corresponding to their mass)

  • Baryongensis continued

QCD (Quark-Hadron) transition $t \sim 10^{-6} \mathrm{s}$

T101213 K200 MeV1 GeVT \sim 10^{12-13}\ \mathrm{K} \simeq 200\ \mathrm{MeV}-1\ \mathrm{GeV}
  • Quarks can no longer exist on their own. They combine into hadrons (baryons and mesons), glued together by gluons (strong force bosons)

  • Quark confinement commences

The Universe at $t>1\text{ s}$

  • The Lepton era $t \sim 10^{-6} \text { to } t \sim \text { a few } \mathrm{s}$

  • $T\le1\text{ GeV}$, the physics is well understood and accessible to experimental verification with particle accelerators (CERN)

Decoupling of Neutrinos $t \simeq 1 \mathrm{s}$

T1 MeV1010 KT \simeq 1\ \mathrm{MeV} \simeq 10^{10}\ \mathrm{K}
  • The energy is much less then the rest-mass of protons and neutrons

  • All the baryons that exist today must have already been present when the Universe was one millionth of a second old

  • So long as the reaction rate is faster than the expansion rate, electrons, neutrinos and their anti-particles and photons are kept in equilibrium by the following reactions

    • Compton scattering

    • Pair production and annihilation

    • Neutrino-antineutrino scattering

    • Neutrino-electron scattering

    The reactions involving neutrinos are mediated by the weak force

    ΓH(T1.6×1010K)3\frac{\Gamma}{H} \simeq\left(\frac{T}{1.6 \times 10^{10} \mathrm{K}}\right)^{3}

    When $T$ falls below $10^{10}\text{ K}$, the neutrinos are no longer in equilibrium and decouple from the rest of the plasma

  • At freeze-out the neutrinos are still relativistic with a thermal distribution at the same temperature as the electrons and photons that remained in mutual equilibrium

  • The neutrinos have kept their thermal distribution to the present day, with $T\propto 1/a$ - difficult to detect

Electron-Positron Annibilation $t\simeq 5\text{ s}$

T500 keV5×109 KT\sim500\text{ keV}\sim 5\times10^9\text{ K}
  • The number density of photons with energies above the pair production threshold is insufficient to maintain the reaction $\ce{e+ + e- <-> {\gamma} + \gamma}$, and that the reaction proceeds preferentially in the right direction

  • Only a small number of electrons are left to balance the protons produced by baryogenesis - electrically neutral universe

  • Photon gas is re-heated (not neutrinos, since they are no longer in thermal equilibrium with photons, except for some high energy neutrinos)

  • After annihilation

    Tν=(411)1/3TγT_{\nu}=\left(\frac{4}{11}\right)^{1 / 3} T_{\gamma}

    which has been maintained ever since, $T_{\nu,0}=0.71 \times 2.73=1.95 \mathrm{K}$

Equilibrium Thermodynamics

  • See in any textbook of statistical mechanics

  • Energy density for (relativistic)

    • Bosons

      u=g2aT4u=\frac{g}{2} a T^{4}
    • Fermions

      u=78g2aT4u=\frac{7}{8} \frac{g}{2} a T^{4}

    The total energy density of the mixture of photons (2 polarization states), electrons, positrons (two spin freedoms), neutrinos and antineutrinos (only one helicity state) at time $t\sim1 \text{ s}$ is thus

    u=ρ(T)c2=c2ρi(T)=12gaT4u=\rho(T) c^{2}=c^{2} \sum \rho_{\mathrm{i}}(T)=\frac{1}{2} g_{*} a T^{4}

    where

    g=bosonsgi+78fermionsgj=2+(278+278)+278Nνg_{*}=\sum_{\text {bosons}} g_{i}+\frac{7}{8} \sum_{\text {fermions}} g_{j}=2+\left(2\cdot\frac78+2\cdot\frac78\right)+2\cdot\frac78\mathcal N_\nu

    $\mathcal N_\nu$ is the number of neutrino families

Last updated