Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Intro
  • Average density of photons
  • Average density of baryons
  • Density ratio of photons and baryons
  • The evolution of temperature
  • The Universe at $t<1\text{ s}$
  • Planck time
  • Freeze-out
  • Major milestones
  • The Universe at $t>1\text{ s}$
  • Decoupling of Neutrinos $t \simeq 1 \mathrm{s}$
  • Electron-Positron Annibilation $t\simeq 5\text{ s}$
  • Equilibrium Thermodynamics
  1. 物理宇宙学基础

Chapter 7 Thermal History of the Universe

PreviousChapter 8 Primordial NucleosynthesisNextChapter 6 Supernova cosmology

Last updated 4 years ago

Intro

Average density of photons

  • The total energy density of a black body is

    u=aT4u=aT^4u=aT4

    where $a={4\sigma}/{c}=7.57\times10^{-15}\text{ erg}\text{ cm}^{-3}\text{ K}^{-4}$ is the radiation constant

  • Average energy of a photon (black body)

    ⟨u⟩=∫hνBν(T)dν∫Bν(T)dν=2.70kT\langle u\rangle=\frac{\int h\nu B_\nu(T)\text d\nu}{\int B_\nu(T)\text d\nu}=2.70 k T⟨u⟩=∫Bν​(T)dν∫hνBν​(T)dν​=2.70kT

where $k=1.38 \times 10^{-16} \text { erg } \mathrm{K}^{-1}$ is Boltzmann constant

  • Number density of CMB photons (which make up most of the photons at present) today

    nγ,0=u⟨u⟩=a2.70kT3=4.1×102cm−3n_{\gamma, 0}=\frac{u}{\langle u\rangle}=\frac{a}{2.70 k} T^{3}=4.1 \times 10^{2} \mathrm{cm}^{-3}nγ,0​=⟨u⟩u​=2.70ka​T3=4.1×102cm−3

Average density of baryons

  • $\Omega_{\text b,0}=0.0488$, which is a small fraction compared to the dark matter

Density ratio of photons and baryons

  • Number density

  • Energy density

    If we include non-relativistic cold dark matter (matter) and relativistic neutrinos (radiation)

    So the present universe is matter dominated

  • However, in the past, since

    we find the redshift that these two density equal

    before which the radiation dominated

The evolution of temperature

  • $\lambda_{max}T$ is a constant

  • At early universe, the typical photons were sufficiently energetic that they interacted strongly with matter - the temperature was dominated by the radiation

    The evolution of scale factor

The Universe at $t<1\text{ s}$

Planck time

  • According to the formula

    $T$ diverges as $a\to\infty$

  • This extrapolation fails when the wavelength associated with the particle approaches its Schiwarzschild radius

    • Planck mass

    • Planck length

    • Planck time

      At $t\approx t_P$, classical spacetime dissolves into a foam of quantum black holes - Quantum gravity limit

Freeze-out

  • Interaction rate (1/s): $\Gamma$

  • Expansion rate of the universe: $H$

    • If $\Gamma\gg H$, then the timescale of particle interactions is much smaller than the characteristic expansion timescale

      and local thermal equilibrium is built

    • If $tc\sim t\ce{H}$

      The particles in question decouple from the thermal plasma

Major milestones

Planck time $t\sim10^{-43}\text{ s}$

  • Four fundamental interactions were united before Planck time

  • Gravity became separate from the other three forces

  • Beginning of GUT era

GUT transition $t \sim 10^{-35} \mathrm{s}$

  • The Electroweak and Strong forces emerged

  • Quarks (that interact mostly through the strong force) and leptons (which interact mostly through the weak force) and their anti-particles acquired individual identities

End of GUT era

Inflation $t\sim10^{-36}-10^{-34}\text{ s}$

  • Horizon problem (causal link)

  • Flatness problem

  • Monopole problem

Baryogenesis

  • Absence of anti-matter

Electro-Weak transition $t \sim 10^{-12} \mathrm{s}$

  • The electromagnetic and weak forces become separate

  • Leptons acquired mass

  • Corresponding bosons appeared (and decayed at the temperature corresponding to their mass)

  • Baryongensis continued

QCD (Quark-Hadron) transition $t \sim 10^{-6} \mathrm{s}$

  • Quarks can no longer exist on their own. They combine into hadrons (baryons and mesons), glued together by gluons (strong force bosons)

  • Quark confinement commences

The Universe at $t>1\text{ s}$

  • The Lepton era $t \sim 10^{-6} \text { to } t \sim \text { a few } \mathrm{s}$

  • $T\le1\text{ GeV}$, the physics is well understood and accessible to experimental verification with particle accelerators (CERN)

Decoupling of Neutrinos $t \simeq 1 \mathrm{s}$

  • The energy is much less then the rest-mass of protons and neutrons

  • All the baryons that exist today must have already been present when the Universe was one millionth of a second old

  • So long as the reaction rate is faster than the expansion rate, electrons, neutrinos and their anti-particles and photons are kept in equilibrium by the following reactions

    • Compton scattering

      \ce{e^{\pm} + \gamma <-> e^{\pm} + \gamma }
    • Pair production and annihilation

      \ce{e+ + e- <-> {\gamma} + \gamma}
    • Neutrino-antineutrino scattering

      \ce{\nu \+ \bar{\nu} <-> e+ + e-}
    • Neutrino-electron scattering

      \ce{\nu \+ e^{\pm} <-> \nu \+ e^{\pm} }

    The reactions involving neutrinos are mediated by the weak force

    When $T$ falls below $10^{10}\text{ K}$, the neutrinos are no longer in equilibrium and decouple from the rest of the plasma

  • At freeze-out the neutrinos are still relativistic with a thermal distribution at the same temperature as the electrons and photons that remained in mutual equilibrium

  • The neutrinos have kept their thermal distribution to the present day, with $T\propto 1/a$ - difficult to detect

Electron-Positron Annibilation $t\simeq 5\text{ s}$

  • The number density of photons with energies above the pair production threshold is insufficient to maintain the reaction $\ce{e+ + e- <-> {\gamma} + \gamma}$, and that the reaction proceeds preferentially in the right direction

  • Only a small number of electrons are left to balance the protons produced by baryogenesis - electrically neutral universe

  • Photon gas is re-heated (not neutrinos, since they are no longer in thermal equilibrium with photons, except for some high energy neutrinos)

  • After annihilation

    which has been maintained ever since, $T_{\nu,0}=0.71 \times 2.73=1.95 \mathrm{K}$

Equilibrium Thermodynamics

  • See in any textbook of statistical mechanics

  • Energy density for (relativistic)

    • Bosons

    • Fermions

    The total energy density of the mixture of photons (2 polarization states), electrons, positrons (two spin freedoms), neutrinos and antineutrinos (only one helicity state) at time $t\sim1 \text{ s}$ is thus

    where

    $\mathcal N_\nu$ is the number of neutrino families

nb,0=Ωb,0⋅ρcrit⟨mb⟩=0.0488⋅8.5×10−30g⋅cm−31.67×10−24g=2.5×10−7cm−3n_{\mathrm{b}, 0}=\frac{\Omega_{\mathrm{b}, 0} \cdot \rho_{\mathrm{crit}}}{\left\langle m_{\mathrm{b}}\right\rangle}=\frac{0.0488 \cdot 8.5 \times 10^{-30} \mathrm{g}\cdot \mathrm{cm}^{-3}}{1.67 \times 10^{-24} \mathrm{g}}=2.5 \times 10^{-7} \mathrm{cm}^{-3}nb,0​=⟨mb​⟩Ωb,0​⋅ρcrit​​=1.67×10−24g0.0488⋅8.5×10−30g⋅cm−3​=2.5×10−7cm−3
nb,0nγ,0=6.1×10−10\frac{n_{\mathrm{b}, 0}}{n_{\gamma, 0}}=6.1 \times 10^{-10}nγ,0​nb,0​​=6.1×10−10
ub,0uγ,0=nbnγ⟨mb⟩c2⟨u⟩=9.0×102\frac{u_{\mathrm{b}, 0}}{u_{\gamma, 0}}=\frac{n_{\mathrm{b}}}{n_{\gamma}} \frac{\left\langle m_{\mathrm{b}}\right\rangle c^{2}}{\langle u\rangle}=9.0 \times 10^{2}uγ,0​ub,0​​=nγ​nb​​⟨u⟩⟨mb​⟩c2​=9.0×102
um,0urad,0≃3.4×103\frac{u_{\mathrm{m}, 0}}{u_{\mathrm{rad}, 0}} \simeq 3.4 \times 10^{3}urad,0​um,0​​≃3.4×103
ρm=ρ0(1+z)3ρrad=ρ0(1+z)4\rho_{\mathrm{m}}=\rho_{0}(1+z)^{3}\\ \rho_{\mathrm{rad}}=\rho_{0}(1+z)^{4}ρm​=ρ0​(1+z)3ρrad​=ρ0​(1+z)4
zeq≈3370z_{eq}\approx3370zeq​≈3370
TCMB=2.73(1+z) K=2.73a−1 KT_\text{CMB}=2.73(1+z)\text{ K}=2.73a^{-1}\text{ K}TCMB​=2.73(1+z) K=2.73a−1 K
a(t)=tt0⇒t(s)=(T1.5×1010 K)−2=(T1.3 MeV)−2a(t)=\sqrt{\frac{t}{t_0}}\Rightarrow t(\mathrm{s})=\left(\frac{T}{1.5 \times 10^{10}\ \mathrm{K}}\right)^{-2}=\left(\frac{T}{1.3\ \mathrm{MeV}}\right)^{-2}a(t)=t0​t​​⇒t(s)=(1.5×1010 KT​)−2=(1.3 MeVT​)−2
T=2.73/a (K)T=2.73/a\ (\text{K})T=2.73/a (K)
λ=2πℏmc=πrs=2πGmc2\lambda=\frac{2\pi\hbar}{mc}=\pi r_s=\frac{2\pi Gm}{c^2}λ=mc2πℏ​=πrs​=c22πGm​
mP=(ℏcG)1/2≃1019 GeVm_{\mathrm{P}}=\left(\frac{\hbar c}{G}\right)^{1 / 2} \simeq 10^{19}\ \mathrm{GeV}mP​=(Gℏc​)1/2≃1019 GeV
lP=ℏmPc=(ℏGc3)1/2≃10−33 cml_{\mathrm{P}}=\frac{\hbar}{m_{\mathrm{P}} c}=\left(\frac{\hbar G}{c^{3}}\right)^{1 / 2} \simeq 10^{-33}\ \mathrm{cm}lP​=mP​cℏ​=(c3ℏG​)1/2≃10−33 cm
tP=lPc=(ℏGc5)1/2≃10−43 st_{\mathrm{P}}=\frac{l_{\mathrm{P}}}{c}=\left(\frac{\hbar G}{c^{5}}\right)^{1 / 2} \simeq 10^{-43}\ \mathrm{s}tP​=clP​​=(c5ℏG​)1/2≃10−43 s
tc=1Γ≪tH=1Ht_{\mathrm{c}}=\frac{1}{\Gamma} \ll t_{\mathrm{H}}=\frac{1}{H}tc​=Γ1​≪tH​=H1​
T∼1027 K≃1014 GeVT \sim 10^{27}\ \mathrm{K} \simeq 10^{14}\ \mathrm{GeV}T∼1027 K≃1014 GeV
T∼1015 K≃100 GeVT \sim 10^{15}\ \mathrm{K} \simeq 100\ \mathrm{GeV}T∼1015 K≃100 GeV
T∼1012−13 K≃200 MeV−1 GeVT \sim 10^{12-13}\ \mathrm{K} \simeq 200\ \mathrm{MeV}-1\ \mathrm{GeV}T∼1012−13 K≃200 MeV−1 GeV
T≃1 MeV≃1010 KT \simeq 1\ \mathrm{MeV} \simeq 10^{10}\ \mathrm{K}T≃1 MeV≃1010 K
ΓH≃(T1.6×1010K)3\frac{\Gamma}{H} \simeq\left(\frac{T}{1.6 \times 10^{10} \mathrm{K}}\right)^{3}HΓ​≃(1.6×1010KT​)3
T∼500 keV∼5×109 KT\sim500\text{ keV}\sim 5\times10^9\text{ K}T∼500 keV∼5×109 K
Tν=(411)1/3TγT_{\nu}=\left(\frac{4}{11}\right)^{1 / 3} T_{\gamma}Tν​=(114​)1/3Tγ​
u=g2aT4u=\frac{g}{2} a T^{4}u=2g​aT4
u=78g2aT4u=\frac{7}{8} \frac{g}{2} a T^{4}u=87​2g​aT4
u=ρ(T)c2=c2∑ρi(T)=12g∗aT4u=\rho(T) c^{2}=c^{2} \sum \rho_{\mathrm{i}}(T)=\frac{1}{2} g_{*} a T^{4}u=ρ(T)c2=c2∑ρi​(T)=21​g∗​aT4
g∗=∑bosonsgi+78∑fermionsgj=2+(2⋅78+2⋅78)+2⋅78Nνg_{*}=\sum_{\text {bosons}} g_{i}+\frac{7}{8} \sum_{\text {fermions}} g_{j}=2+\left(2\cdot\frac78+2\cdot\frac78\right)+2\cdot\frac78\mathcal N_\nug∗​=bosons∑​gi​+87​fermions∑​gj​=2+(2⋅87​+2⋅87​)+2⋅87​Nν​