Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Fluid Approximation
  • Equation of Continuity - Mass Conservation
  • Euler Equation - Momentum Conservation
  • Equation of State: $f(\rho,p,T)=0$
  • Bernoulli's theorem
  • Energy Conservation
  • Kinetic Energy
  • Thermal Energy (Total - Kinetic)
  • Viscosity & Navier-Stokes Equation
  • Viscous Tensor for Fluid
  • Construction of Stress Tensor
  • Navier-Stokes Equation
  • The Reynolds Number
  1. 天体物理吸积过程

Chapter 2. Fluid Dynamics

Fluid Approximation

The fluid approximation is valid when the system size $L$ is much larger than the mean free path $l_\text{mfp}$.

  • For ISM (interstellar medium), the typical mean free path is

    lmfp∼1015cm(n1 cm−3)−1(d1 A˚)−2l_\text{mfp}\sim 10^{15}\text{cm}\left(\frac{n}{1\text{ cm}^{-3}}\right)^{-1}\left(\frac{d}{1\ \AA}\right)^{-2}lmfp​∼1015cm(1 cm−3n​)−1(1 A˚d​)−2

Inside each fluid particle, we can define thermal dynamical quantities, $T,\rho,P,S$, as well as a velocity field $\vec v(\vec x,t)$.

For any quantity of the fluid element at $(\vec r_0,t_0)$, say $F(\vec r_0,t_0)$, we have

ΔF=F(r⃗0+v⃗(r⃗0)Δt,t0+Δt)−F(r⃗0,t0)=(∂F∂t+vx∂F∂x+vy∂F∂y+vz∂F∂z)Δt+O(Δt2)\begin{align*} \Delta F&=F\left(\vec r_0+\vec v(\vec r_0)\Delta t,t_0+\Delta t\right)-F(\vec r_0,t_0)\\ &=\left(\frac{\partial F}{\partial t}+v_x\frac{\partial F}{\partial x}+v_y\frac{\partial F}{\partial y}+v_z\frac{\partial F}{\partial z}\right)\Delta t+\mathcal O(\Delta t^2) \end{align*}ΔF​=F(r0​+v(r0​)Δt,t0​+Δt)−F(r0​,t0​)=(∂t∂F​+vx​∂x∂F​+vy​∂y∂F​+vz​∂z∂F​)Δt+O(Δt2)​

In fact, we can write the derivative of $F$

lim⁡Δt→0ΔFΔt\lim_{\Delta t\to 0}\frac{\Delta F}{\Delta t}Δt→0lim​ΔtΔF​

in two different ways

  • Lagrange's derivative

    DFDt\frac{\text DF}{\text Dt}DtDF​

    which follows the fluid element everywhere.

  • Eulerian derivative

    (∂∂t+v⃗⋅∇)F\left(\frac{\partial}{\partial t}+\vec v\cdot \nabla\right) F(∂t∂​+v⋅∇)F

    which is more important for numerical calculations, as it considers only fixed fluid cells.

Equation of Continuity - Mass Conservation

  • In Eulerian picture

    For a small, fixed volume $\delta V_0$, in a time span of $\Delta t$, the change in mass inside is

    δm=Δt⋅ddt(∭δV0ρdV0)\delta m=\Delta t\cdot\frac{\text d}{\text dt}\left(\iiint_{\delta V_0}\rho\text dV_0\right)δm=Δt⋅dtd​(∭δV0​​ρdV0​)

    Consider the mass flow at the surface

    j⃗=Δt∯δS(v⃗⋅n⃗)ρdS=Δt∭δV0∇⋅(ρv⃗)dV0\vec j=\Delta t\oiint_{\delta S}\left(\vec v\cdot\vec n\right)\rho\text dS=\Delta t\iiint_{\delta V_0}\nabla\cdot\left(\rho\vec v\right)\text dV_0j​=Δt∬​δS​(v⋅n)ρdS=Δt∭δV0​​∇⋅(ρv)dV0​

    where we have applied Gauss' divergence theorem. Here $\vec n$ is the normal vector of the surface.

    If there are no source/sink of mass within the fluid element, the mass flow should exactly account for the change in mass

    ddt(∭δV0ρdV0)+∭δV0∇⋅(ρv⃗)dV0=0\frac{\text d}{\text dt}\left(\iiint_{\delta V_0}\rho\text dV_0\right)+\iiint_{\delta V_0}\nabla\cdot\left(\rho\vec v\right)\text dV_0=0dtd​(∭δV0​​ρdV0​)+∭δV0​​∇⋅(ρv)dV0​=0

    Since we have fixed $\Delta V$, we can write this formula so that for any $\Delta V_0$

    ∭δV0(∂ρ∂t+∇⋅(ρv⃗))dV0=0\iiint_{\delta V_0}\left(\frac{\partial \rho}{\partial t}+\nabla\cdot\left(\rho\vec v\right)\right)\text dV_0=0∭δV0​​(∂t∂ρ​+∇⋅(ρv))dV0​=0

    The arbitrariness of the choice of $\Delta V$ directly leads to the famous equation of continuity

    ∂ρ∂t+∇⋅(ρv⃗)=0\frac{\partial \rho}{\partial t}+\nabla\cdot\left(\rho\vec v\right)=0∂t∂ρ​+∇⋅(ρv)=0
  • In Lagrange's picture

    Let us consider a volume element $\delta V$ that moves with fluid particles.

    If no mass creation / annihilation

    0=D(δm)Dt=DDt(ρδV)=DρDtδV+ρDDt(δV)0=\frac{\text D(\delta m)}{\text Dt}=\frac{\text D}{\text Dt}\left(\rho\delta V\right)=\frac{\text D\rho}{\text Dt}\delta V+\rho\frac{\text D}{\text Dt}\left(\delta V\right)0=DtD(δm)​=DtD​(ρδV)=DtDρ​δV+ρDtD​(δV)
    ⇒DρDt=−ρδVDDt(δV)=−ρ∑i1δxiD(δxi)Dt=−ρ(∇⋅v⃗)\Rightarrow \frac{\text D\rho}{\text Dt}=-\frac{\rho}{\delta V}\frac{\text D}{\text Dt}\left(\delta V\right)=-\rho\sum_{i}\frac{1}{\delta x_i}\frac{\text D\left(\delta x_i\right)}{\text Dt}=-\rho\left(\nabla\cdot \vec v\right)⇒DtDρ​=−δVρ​DtD​(δV)=−ρi∑​δxi​1​DtD(δxi​)​=−ρ(∇⋅v)

    Recall that

    DDt=∂∂t+v⃗⋅∇\frac{\text D}{\text Dt}=\frac{\partial}{\partial t}+\vec v\cdot \nablaDtD​=∂t∂​+v⋅∇

    Then

    (∂∂t+v⃗⋅∇+∇⋅v⃗)ρ=0⇒∂ρ∂t+∇⋅(ρv⃗)=0\left(\frac{\partial}{\partial t}+\vec v\cdot \nabla+\nabla\cdot\vec v\right)\rho=0\Rightarrow\frac{\partial\rho}{\partial t}+\nabla\cdot\left(\rho\vec v\right)=0(∂t∂​+v⋅∇+∇⋅v)ρ=0⇒∂t∂ρ​+∇⋅(ρv)=0

Two pictures give exactly the same equation!

Now we further explore the relation between two pictures. In the Lagrange's picture,

δV=dx⋅dy⋅dz\delta V=\text dx\cdot\text dy\cdot\text dzδV=dx⋅dy⋅dz

while in the Eulerian picture

δV0=dξx⋅dξy⋅dξz\delta V_0=\text d\xi_x\cdot\text d\xi_y\cdot\text d\xi_zδV0​=dξx​⋅dξy​⋅dξz​

$\delta V$ and $\delta V_0$ are related as follows,

δV=∣∂(x,y,z)∂(ξx,ξy,ξz)∣δV0≡JδV0\delta V=\left|\frac{\partial\left(x,y,z\right)}{\partial\left(\xi_x,\xi_y,\xi_z\right)}\right|\delta V_0\equiv J\delta V_0δV=​∂(ξx​,ξy​,ξz​)∂(x,y,z)​​δV0​≡JδV0​

The ratio $J$ is called the expansion of the fluid. Euler's expansion formula claims that

DJDt=(∇⋅v⃗)J\frac{\text DJ}{\text Dt}=\left(\nabla \cdot \vec v\right)JDtDJ​=(∇⋅v)J

Then if we reconsider the conservation of mass in Lagrange's picture,

DDt∭δVρdV=0\frac{\text D}{\text Dt}\iiint_{\delta V}\rho\text{d}V=0DtD​∭δV​ρdV=0
  ⟺  0=DDt∭δVρJdV0=∭δV[DρDt+ρ(∇⋅v⃗)]JdV0\iff 0=\frac{\text D}{\text Dt}\iiint_{\delta V}\rho J\text{d}V_0=\iiint_{\delta V}\left[\frac{\text D \rho}{\text Dt}+\rho\left(\nabla\cdot \vec v\right)\right]J\text dV_0⟺0=DtD​∭δV​ρJdV0​=∭δV​[DtDρ​+ρ(∇⋅v)]JdV0​

which also gives the continuity formula

DρDt+ρ(∇⋅u)=0\frac{\text D \rho}{\text Dt}+\rho\left(\nabla\cdot u\right)=0DtDρ​+ρ(∇⋅u)=0

Before moving to the next section, we can similarly derive several useful identities of the Lagrange's derivative.

For a function $F$,

DDt∭VFdV=DDt∭VFJdV0=∭V[DFDt+(∇⋅v⃗)F]JdV0=∭V[DFDt+(∇⋅v⃗)F]dV\frac{\text D }{\text Dt}\iiint_VF\text dV=\frac{\text D }{\text Dt}\iiint_VFJ\text dV_0=\iiint_V\left[\frac{\text D F}{\text Dt}+\left(\nabla \cdot \vec v\right)F\right]J\text dV_0=\iiint_V\left[\frac{\text D F}{\text Dt}+\left(\nabla \cdot \vec v\right)F\right]\text dVDtD​∭V​FdV=DtD​∭V​FJdV0​=∭V​[DtDF​+(∇⋅v)F]JdV0​=∭V​[DtDF​+(∇⋅v)F]dV
  ⟺  DDt∭VFdV=∭V[∂F∂t+∇⋅(Fv⃗)]dV\iff \frac{\text D }{\text Dt}\iiint_VF\text dV=\iiint_V\left[\frac{\partial F}{\partial t}+\nabla\cdot\left(F \vec v\right)\right]\text dV⟺DtD​∭V​FdV=∭V​[∂t∂F​+∇⋅(Fv)]dV

This is known as the Reynolds transport theorem. Simply let $F=\alpha\rho$, we have

DDt∭VαρdV=∭V[DDt(αρ)+(∇⋅v⃗)αρ]dV=∭V{α[DρDt+(∇⋅v⃗)ρ]+ρDαDt}dV=∭VρDαDtdV\begin{align*} \frac{\text D }{\text Dt}\iiint_V\alpha\rho\text dV&=\iiint_V\left[\frac{\text D }{\text Dt}\left(\alpha\rho\right)+\left(\nabla \cdot \vec v\right)\alpha\rho\right]\text dV\\ &=\iiint_V\left\{\alpha\left[\frac{\text D \rho}{\text Dt}+\left(\nabla \cdot \vec v\right)\rho\right]+\rho\frac{\text D\alpha}{\text Dt}\right\}\text dV\\ &=\iiint_V\rho\frac{\text D\alpha}{\text Dt}\text dV \end{align*}DtD​∭V​αρdV​=∭V​[DtD​(αρ)+(∇⋅v)αρ]dV=∭V​{α[DtDρ​+(∇⋅v)ρ]+ρDtDα​}dV=∭V​ρDtDα​dV​

This identity is extremely useful in the following chapters.

Euler Equation - Momentum Conservation

In the Lagrange's picture, the acceleration onto a mass element is given by

DDt∭V(t)ρv⃗dV=∭V(t)ρDv⃗DtdV\frac{\text D}{\text Dt}\iiint_{V(t)}\rho\vec v\text dV=\iiint_{V(t)}\rho\frac{\text D\vec v}{\text Dt}\text dVDtD​∭V(t)​ρvdV=∭V(t)​ρDtDv​dV

With the Reynolds transport theorem, the EoS thus gives

∭V(t)ρDv⃗DtdV=∭V(t)f⃗dV+∯S(t)t⃗dS\iiint_{V(t)}\rho\frac{\text D\vec v}{\text Dt}\text dV=\iiint_{V(t)}\vec f\text dV+\oiint_{S(t)}\vec t\text dS∭V(t)​ρDtDv​dV=∭V(t)​f​dV+∬​S(t)​tdS
  • First term - body force (e.g gravity)

  • Second term - surface force (e.g. pressure)

Consider the $i$-th component of the RHS

∭V(t)fidV+∯S(t)tidS=∭V(t)fidV+∯S(t)TijnjdS=∭V(t)(fi+∂jTij)dV\iiint_{V(t)}f^i\text dV+\oiint_{S(t)}t^i\text dS=\iiint_{V(t)}f^i\text dV+\oiint_{S(t)}T^{ij}n_j\text dS=\iiint_{V(t)}\left(f^i+\partial_jT^{ij}\right)\text dV∭V(t)​fidV+∬​S(t)​tidS=∭V(t)​fidV+∬​S(t)​Tijnj​dS=∭V(t)​(fi+∂j​Tij)dV

where $\mathcal T$ is the stress tensor, which satisfies

ti=Tijnjt^i=T^{ij}n_jti=Tijnj​

An important surface force is pressure.

The force caused by pressure is

F⃗p=−∬Spn⃗dS=−∭V∇pdV\vec F_p=-\iint_S p\vec n\text dS=-\iiint_V\nabla p\text dVFp​=−∬S​pndS=−∭V​∇pdV
  • Pressure and Stress Tensor

    If the $i$-th component

    −∂ip=∂jTij-\partial_i p=\partial_j T^{ij}−∂i​p=∂j​Tij

    Thus $p$ is strongly correlated with the diagonal components in $\mathcal T$.

Since the choice of $V$ is arbitrary, the EoM is expressed as

ρDv⃗Dt=−∇p+f⃗\rho\frac{\text D\vec v}{\text Dt}=-\nabla p+\vec fρDtDv​=−∇p+f​
  ⟺  ∂v⃗∂t+(v⃗⋅∇)v⃗=−1ρ∇p+1ρf⃗\iff \frac{\partial \vec v}{\partial t}+\left(\vec v\cdot \nabla\right)\vec v=-\frac1\rho\nabla p+\frac1\rho\vec f⟺∂t∂v​+(v⋅∇)v=−ρ1​∇p+ρ1​f​

which is the famous Euler equation for ideal fluid.

Using the equation of continuity and the Euler equation, we can calculate the time derivative of mass flux

∂∂t(ρvi)=vi∂ρ∂t+ρ∂vi∂t=−vi∂j(ρvj)−ρvj∂jvi−∂jδijp=−∂j(ρvivj+δijp)≡−∂jΠij\begin{align*} \frac{\partial}{\partial t}\left(\rho v^i\right)&=v^i\frac{\partial\rho}{\partial t}+\rho\frac{\partial v^i}{\partial t}\\ &=-v^i\partial_j\left(\rho v^j\right)-\rho v^j\partial_jv^i-\partial_j\delta^{ij}p\\ &=-\partial_j\left(\rho v^iv^j+\delta^{ij}p\right)\\ &\equiv -\partial_j\Pi^{ij} \end{align*}∂t∂​(ρvi)​=vi∂t∂ρ​+ρ∂t∂vi​=−vi∂j​(ρvj)−ρvj∂j​vi−∂j​δijp=−∂j​(ρvivj+δijp)≡−∂j​Πij​

So in the Eulerian picture, the momentum conservation is

∂∂t(ρvi)+∂jΠij=0\frac{\partial}{\partial t}\left(\rho v^i\right)+\partial_j\Pi^{ij}=0∂t∂​(ρvi)+∂j​Πij=0

Integrate the above equation over a fixed volume $V$

ddt∭VρvidV=−∭∂ipdV−∭∂j(ρvivj)dV=−∯SpnidS−∯SρvivjnjdS\begin{align*} \frac{\text d}{\text dt}\iiint_V\rho v^i\text dV&=-\iiint\partial^i p\text dV-\iiint\partial_j\left(\rho v^iv^j\right)\text dV\\ &=-\oiint_Spn^i\text dS-\oiint_S\rho v^iv^jn_j\text dS \end{align*}dtd​∭V​ρvidV​=−∭∂ipdV−∭∂j​(ρvivj)dV=−∬​S​pnidS−∬​S​ρvivjnj​dS​
  • First term - thermal pressure

  • Second term - ram pressure

Equation of State: $f(\rho,p,T)=0$

Two independent quantities are necessary to characterize thermal states.

  • Ideal gas

    p=ρkBTμmpp=\frac{\rho k_BT}{\mu m_p}p=μmp​ρkB​T​
  • Adiabatic gas

    p=Kργ,γ=cpcVp=K\rho^\gamma,\quad \gamma=\frac{c_p}{c_V}p=Kργ,γ=cV​cp​​

    The adiabatic index $\gamma=5/3$ for mono-atomic gas.

Ideal + adiabatic is an example of polytropic EoS

If $p=f(\rho)$, the EoS is known as barotropic.

For inviscid fluid

DsDt=∂s∂t+(v⃗⋅∇)s=0\frac{\text Ds}{\text Dt}=\frac{\partial s}{\partial t}+\left(\vec v\cdot \nabla\right)s=0DtDs​=∂t∂s​+(v⋅∇)s=0

that is, entropy doesn't change along each fluid stream line.

Furthermore, if $s=const$ everywhere at $r=r_0$, and $s=const$ is preserved, the. motion is known as isentropic motion.

Bernoulli's theorem

In general, we would like to derive the energy conservation with Euler equation with certain assumptions

  • Barotropic EoS: $\rho=f(p)$, thus the specific enthalpy is simply

    h(p)≡∫dpρ(p)h(p)\equiv\int\frac{\text dp}{\rho(p)}h(p)≡∫ρ(p)dp​
  • Potential force: $\vec f=-\rho\nabla \phi$

Then we can rewrite Euler equation

∂v⃗∂t+(v⃗⋅∇)v⃗=−1ρ∇p−∇ϕ\frac{\partial \vec v}{\partial t}+\left(\vec v\cdot \nabla\right)\vec v=-\frac1\rho\nabla p-\nabla\phi∂t∂v​+(v⋅∇)v=−ρ1​∇p−∇ϕ
⇒∂v⃗∂t+∇(12v2+h+ϕ)=v⃗×ω⃗\Rightarrow \frac{\partial \vec v}{\partial t}+\nabla\left(\frac12v^2+h+\phi\right)=\vec v\times\vec\omega⇒∂t∂v​+∇(21​v2+h+ϕ)=v×ω

where the vorticity is defined as

ω⃗=∇×v⃗\vec\omega=\nabla\times\vec vω=∇×v

and we have applied the identity

v⃗×(∇×v⃗)=(∇⋅v⃗)v⃗−(v⃗⋅∇)v⃗=12∇v2−(v⃗⋅∇)v⃗\vec v\times\left(\nabla\times\vec v\right)=\left(\nabla\cdot\vec v\right) \vec v-\left(\vec v\cdot\nabla\right) \vec v=\frac12\nabla v^2-\left(\vec v\cdot\nabla\right) \vec vv×(∇×v)=(∇⋅v)v−(v⋅∇)v=21​∇v2−(v⋅∇)v
  • For steady flow

    ∂u∂t=0\frac{\partial u}{\partial t}=0∂t∂u​=0

    thus

    v⃗⋅∇(12v2+h+ϕ)=v⃗⋅(v⃗×ω⃗)=0\vec v\cdot\nabla\left(\frac12v^2+h+\phi\right)=\vec v\cdot\left(\vec v\times\vec\omega\right)=0v⋅∇(21​v2+h+ϕ)=v⋅(v×ω)=0

    which means $\frac12v^2+h+\phi$ is conserved along each streamline.

  • No vorticity

    ∇×v⃗=0⇒v⃗=−∇ψ\nabla\times \vec v=0\Rightarrow \vec v=-\nabla\psi∇×v=0⇒v=−∇ψ

    thus

    ∂ψ∂t+12v2+h+ϕ=F(t)\frac{\partial\psi}{\partial t}+\frac12v^2+h+\phi=F(t)∂t∂ψ​+21​v2+h+ϕ=F(t)

    and $\nabla F(t)=0$.

  • Steady & no vorticity

    ∂ψ∂t=0\frac{\partial \psi}{\partial t}=0∂t∂ψ​=0

    Then $\frac12v^2+h+\phi$ remains a constant everywhere.

Energy Conservation

For fluid dynamics, the energy change in a unit time is given by

DDt∭V(t)ρ(e+12v2)dV=∭V(t)f⃗⋅v⃗dV+∯S(t)t⃗⋅v⃗dS\frac{\text D}{\text D t}\iiint_{V(t)}\rho\left(e+\frac12 v^2\right)\text dV=\iiint_{V(t)}\vec f\cdot\vec v\text dV+\oiint_{S(t)}\vec t\cdot\vec v\text dSDtD​∭V(t)​ρ(e+21​v2)dV=∭V(t)​f​⋅vdV+∬​S(t)​t⋅vdS

where $e$ is the specific internal energy.

If $T^{ij}$ is simply given by $-p\delta^{ij}$, the second term

∯S(t)t⃗⋅v⃗dS=−∭V(t)∇⋅(pv⃗)dV\oiint_{S(t)}\vec t\cdot\vec v\text dS=-\iiint_{V(t)}\nabla\cdot\left(p\vec v\right)\text dV∬​S(t)​t⋅vdS=−∭V(t)​∇⋅(pv)dV

Again with Reynolds transport theorem,

∭V(t)[ρDDt(e+12v2)+∇⋅(pv⃗)]dV=∭V(t)f⃗⋅v⃗dV\iiint_{V(t)}\left[\rho\frac{\text D}{\text Dt}\left(e+\frac12 v^2\right)+\nabla\cdot\left(p\vec v\right)\right]\text dV=\iiint_{V(t)}\vec f\cdot \vec v\text dV∭V(t)​[ρDtD​(e+21​v2)+∇⋅(pv)]dV=∭V(t)​f​⋅vdV
⇒ρDDt(e+12v2)+∇⋅(pv⃗)=f⃗⋅v⃗\Rightarrow \rho\frac{\text D}{\text Dt}\left(e+\frac12 v^2\right)+\nabla\cdot\left(p\vec v\right)=\vec f\cdot \vec v⇒ρDtD​(e+21​v2)+∇⋅(pv)=f​⋅v
  ⟺  DDt[ρ(e+12v2)]−(e+12v2)DρDt+∇⋅(pv⃗)=f⃗⋅v⃗\iff \frac{\text D}{\text Dt}\left[\rho\left( e+\frac12 v^2\right)\right]-\left(e+\frac12 v^2\right)\frac{\text D\rho}{\text Dt}+\nabla\cdot\left(p\vec v\right)=\vec f\cdot \vec v⟺DtD​[ρ(e+21​v2)]−(e+21​v2)DtDρ​+∇⋅(pv)=f​⋅v
  ⟺  ∂∂t[ρ(e+12v2)]+(∇⋅v⃗+v⃗⋅∇)[ρ(e+12v2)]+∇⋅(pv⃗)=f⃗⋅v⃗\iff \frac{\partial}{\partial t}\left[\rho\left( e+\frac12 v^2\right)\right]+\left(\nabla\cdot \vec v+\vec v\cdot \nabla\right)\left[\rho\left( e+\frac12 v^2\right)\right]+\nabla\cdot\left(p\vec v\right)=\vec f\cdot \vec v⟺∂t∂​[ρ(e+21​v2)]+(∇⋅v+v⋅∇)[ρ(e+21​v2)]+∇⋅(pv)=f​⋅v
  ⟺  ∂∂t[ρ(e+12v2)]+∇⋅[ρv⃗(e+12v2+pρ)]=f⃗⋅v⃗\iff \frac{\partial}{\partial t}\left[\rho\left( e+\frac12 v^2\right)\right]+\nabla\cdot\left[\rho\vec v\left( e+\frac12 v^2+\frac{p}{\rho}\right)\right]=\vec f\cdot \vec v⟺∂t∂​[ρ(e+21​v2)]+∇⋅[ρv(e+21​v2+ρp​)]=f​⋅v

which is known as the energy equation.

We can integrate and expand the second term so that

∭V∇⋅[ρv⃗(e+12v2+pρ)]dV=∯ρvn⃗(e+12v2)dS+∯pvn⃗dS\iiint_V \nabla\cdot\left[\rho\vec v\left( e+\frac12 v^2+\frac{p}{\rho}\right)\right]\text dV=\oiint\rho v_{\vec n}\left( e+\frac12 v^2\right)\text dS+\oiint pv_{\vec n}\text dS∭V​∇⋅[ρv(e+21​v2+ρp​)]dV=∬​ρvn​(e+21​v2)dS+∬​pvn​dS

These two terms correspond to the energy flux and the work, respectively.

  • Here,

    h=e+pρh=e+\frac p\rhoh=e+ρp​

    is the specific enthalpy.

  • If $\vec f$ is given by a static potential as

    f⃗=−ρ∇ϕ,∂ϕ∂t=0\vec f=-\rho\nabla\phi,\quad \frac{\partial \phi}{\partial t}=0f​=−ρ∇ϕ,∂t∂ϕ​=0

    we can further write the energy equation as

    ∂∂t[ρ(e+12v2+ϕ)]+∇⋅[ρv⃗(12v2+h+ϕ)]=0\frac{\partial}{\partial t}\left[\rho\left( e+\frac12 v^2+\phi\right)\right]+\nabla\cdot\left[\rho\vec v\left(\frac12 v^2+h+\phi\right)\right]=0∂t∂​[ρ(e+21​v2+ϕ)]+∇⋅[ρv(21​v2+h+ϕ)]=0

Kinetic Energy

We derive the equation of the kinetic energy from Euler equation,

v⃗⋅[∂v⃗∂t+(v⃗⋅∇)v⃗+1ρ∇p−1ρf⃗]=0\vec v\cdot\left[\frac{\partial \vec v}{\partial t}+\left(\vec v\cdot \nabla\right)\vec v+\frac1\rho\nabla p-\frac1\rho\vec f\right]=0v⋅[∂t∂v​+(v⋅∇)v+ρ1​∇p−ρ1​f​]=0
  ⟺  ρ(∂∂t+v⃗⋅∇)(12v2)+(v⃗⋅∇)p=f⃗⋅v⃗\iff \rho\left(\frac{\partial}{\partial t}+\vec v\cdot\nabla\right)\left(\frac12v^2\right)+\left(\vec v\cdot\nabla\right) p=\vec f\cdot\vec v⟺ρ(∂t∂​+v⋅∇)(21​v2)+(v⋅∇)p=f​⋅v
  ⟺  ρDDt(12v2)+(v⃗⋅∇)p=f⃗⋅v⃗\iff \rho\frac{\text D}{\text Dt}\left(\frac12v^2\right)+\left(\vec v\cdot\nabla\right) p=\vec f\cdot\vec v⟺ρDtD​(21​v2)+(v⋅∇)p=f​⋅v

Thermal Energy (Total - Kinetic)

ρDDt(e+12v2)−ρDDt(12v2)+∇⋅(pv⃗)−(v⃗⋅∇)p=0\rho\frac{\text D}{\text Dt}\left(e+\frac12 v^2\right)-\rho\frac{\text D}{\text Dt}\left(\frac12v^2\right)+\nabla\cdot\left(p\vec v\right)-\left(\vec v\cdot\nabla\right) p=0ρDtD​(e+21​v2)−ρDtD​(21​v2)+∇⋅(pv)−(v⋅∇)p=0
  ⟺  ρDeDt+(∇⋅v⃗)p=0\iff \rho\frac{\text De}{\text Dt}+\left(\nabla\cdot\vec v\right) p=0⟺ρDtDe​+(∇⋅v)p=0

Since

DDt(1ρ)=1ρ∇⋅v⃗\frac{\text D}{\text Dt}\left(\frac1\rho\right)=\frac1\rho\nabla\cdot\vec vDtD​(ρ1​)=ρ1​∇⋅v

We have

DeDt+pDDt(1ρ)=0\frac{\text De}{\text Dt}+p\frac{\text D}{\text Dt}\left(\frac1\rho\right)=0DtDe​+pDtD​(ρ1​)=0

Recall that the first law of thermaldynamics gives

DeDt=−pDDt(1ρ)+TDsDt\frac{\text De}{\text Dt}=-p\frac{\text D}{\text Dt}\left(\frac1\rho\right)+T\frac{\text Ds}{\text Dt}DtDe​=−pDtD​(ρ1​)+TDtDs​

thus

DsDt=0\frac{\text Ds}{\text Dt}=0DtDs​=0

which suggests adiabatic motion of the fluid. In this way, as long as we assume

Tij=−pδijT^{ij}=-p\delta^{ij}Tij=−pδij

we obtain ideal fluid.

Viscosity & Navier-Stokes Equation

In general, the stress tensor is not diagonal,

Tij=−pδij+σijT^{ij}=-p\delta^{ij}+\sigma^{ij}Tij=−pδij+σij

where $\sigma$ is the viscous tensor.

The $i$-th component of the surface force is thus

FSi=∯TijnjdS=−∯pnidS+∯σijnjdSF_S^i=\oiint T^{ij}n_j\text dS=-\oiint pn^i\text dS+\oiint\sigma^{ij}n_j\text dSFSi​=∬​Tijnj​dS=−∬​pnidS+∬​σijnj​dS

and the force vector is

F⃗S=∭V(∇⋅σ−∇p)dV\vec F_S=\iiint_V\left(\nabla\cdot \sigma-\nabla p\right)\text dVFS​=∭V​(∇⋅σ−∇p)dV

We claim that $\mathcal T$ is symmetric, that is, $T^{ij}=T^{ji}$. Consider a box with $\delta V=\delta x\delta y\delta z$. In the $z$-direction, the net torque caused leads to the change in angular momentum with respect to the center of $\delta S_{x,y}$

dLzdt=(r⃗×F⃗)z\frac{\text dL_z}{\text dt}=\left(\vec r\times \vec F\right)_zdtdLz​​=(r×F)z​
ρδV⋅δx2+δy26ω˙z∼(Tx,y−Ty,x)δV\rho\delta V\cdot\frac{\delta x^2+\delta y^2}{6}\dot\omega_z\sim\left(T_{x,y}-T_{y,x}\right)\delta VρδV⋅6δx2+δy2​ω˙z​∼(Tx,y​−Ty,x​)δV

for $\delta x\to0,\delta y\to0$, we have $T{x,y}=T{y,x}$, otherwise the $\dot \omega$ goes to infinite.

Now that we know $\mathcal T$ is symmetric, it has 6 independent components.

Viscous Tensor for Fluid

In a flow with $v_x$ that has a gradient of $\text dv_x/\text dy$, the stress to the $x$-axis is well approximated as

σxy=ηdvxdy\sigma_{xy}=\eta\frac{\text d v_x}{\text dy}σxy​=ηdydvx​​

where $\eta$ is the (dynamic) viscosity determined by microscopic processes of particles. Fluid that satisfies such approximation is known as Nowton fluid.

In astrophysics, a more frequently applied viscosity is the kinematic viscosity $\nu$, defined as

ν=ηρ\nu=\frac{\eta}{\rho}ν=ρη​

$\nu$ in a microscopic perspective

Consider a flow with coherent bulk velocity $v_x(y)$ along the $x$-axis, we try to count how much momentum is exchanged at the surface of $y=y_0$ per unit area per unit time, that is, the shear stress.

For simplicity, all we need to consider is a thin layer within $[y-l\text{mfp},y+l\text{mfp}]$, since we assume mometum is fully exchanged in the first collision. In this way, statistically, particles outside this layer cannot transport momentum to the surface $y=y_0$.

The number flux of particles hitting $y=y_0$ from one side can be estimated as

N=13ncˉ×12N=\frac13 n\bar c\times\frac12N=31​ncˉ×21​

where $n$ is the number density of particles and $\bar c$ is the average velocity dispersion ($\sim c_s$). We introduce a factor of $1/3$ because particles move in all three dimensions and $1/2$ further distinguish motion upwards and downwards. As a result, the shear stress is given by

σxy=16ncˉm[vx(y0+lmfp)−vx(y0−lmfp)]=13ρcˉlmfp∂vx(y0)∂x\sigma_{xy}=\frac16n\bar cm\left[v_x(y_0+l_\text{mfp})-v_x(y_0-l_\text{mfp})\right]=\frac13\rho\bar cl_\text{mfp}\frac{\partial v_x(y_0)}{\partial x}σxy​=61​ncˉm[vx​(y0​+lmfp​)−vx​(y0​−lmfp​)]=31​ρcˉlmfp​∂x∂vx​(y0​)​

Thus

ν=13cˉlmfp\nu=\frac13\bar cl_\text{mfp}ν=31​cˉlmfp​

Unfortunately, momentum transition through collisions of particles is not the main cause of viscosity in astrophysics, and this formula is useless... In fact we can estimate the viscous timescale, in which viscosity drives materials to fall into the accretor.

tvis=r2ν∼r2cˉlmfpt_\text{vis}=\frac{r^2}{\nu}\sim\frac{r^2}{\bar cl_\text{mfp}}tvis​=νr2​∼cˉlmfp​r2​

Construction of Stress Tensor

  1. $\sigma{ij}$ is symmetric since $T{ij}$ is symmetric, but the original definition.

    σij=η∂vi∂xj\sigma_{ij}=\eta\frac{\partial v_i}{\partial x^j}σij​=η∂xj∂vi​​

    is not. In this way, we expand it into symmetric and anti-symmetric parts, as we can do to any second-order tensor

    σij=η2(∂vi∂xj+∂vj∂xi)+η2(∂vi∂xj−∂vj∂xi)\sigma_{ij}=\frac{\eta}{2}\left(\frac{\partial v_i}{\partial x^j}+\frac{\partial v_j}{\partial x^i}\right)+\frac{\eta}{2}\left(\frac{\partial v_i}{\partial x^j}-\frac{\partial v_j}{\partial x^i}\right)σij​=2η​(∂xj∂vi​​+∂xi∂vj​​)+2η​(∂xj∂vi​​−∂xi∂vj​​)

    The second (anti-symmetric) term corresponds to the rotation. It has no viscosity, so we will consider a linear relation between $\sigma{ij}$ and $E{ij}$, which is defined as

    Eij≡12(∂vi∂xj+∂vj∂xi)E_{ij}\equiv\frac{1}{2}\left(\frac{\partial v_i}{\partial x^j}+\frac{\partial v_j}{\partial x^i}\right)Eij​≡21​(∂xj∂vi​​+∂xi∂vj​​)
  2. Fluid doesn't have a preferred direction.

    Intuitionally, we write down the (multi-)linear relation as

    σij=αijklEkl\sigma_{ij}=\alpha_{ijkl}E^{kl}σij​=αijkl​Ekl

    We don't have any information of $\alpha$, but since fluid is isotropic, we would like to believe the tensor itself is isotropic, which means it has the same components in all rotated coordinate systems. There are only three basic 4-order isotropic tensors, all of which are the combination of the famous Kronecker delta $\delta_{ij}$.

    Aijkl=δijδkj, δikδjl, δilδjkA_{ijkl}=\delta_{ij}\delta_{kj},\ \delta_{ik}\delta_{jl},\ \delta_{il}\delta_{jk}Aijkl​=δij​δkj​, δik​δjl​, δil​δjk​

    So we assume $\alpha_{ijkl}$ is simply their linear combination

    σij=(Bδijδkj+Cδikδjl+Dδilδjk)Ekl=BδijEkk+CEij+DEji=B(∇⋅v⃗)δij+(C+D)Eij\begin{align*} \sigma_{ij}&=\left(B\delta_{ij}\delta_{kj}+C\delta_{ik}\delta_{jl}+D\delta_{il}\delta_{jk}\right)E^{kl}\\ &=B\delta_{ij}E^k_k+CE_{ij}+DE_{ji}\\ &=B\left(\nabla\cdot \vec v\right)\delta_{ij}+(C+D)E_{ij} \end{align*}σij​​=(Bδij​δkj​+Cδik​δjl​+Dδil​δjk​)Ekl=Bδij​Ekk​+CEij​+DEji​=B(∇⋅v)δij​+(C+D)Eij​​
  3. Decompose $\sigma_{ij}$ into trace part and traceless part

    tr(σ)=δijσij=(3B+C+D)∇⋅v⃗\text{tr}\left(\sigma\right)=\delta^{ij}\sigma_{ij}=(3B+C+D)\nabla\cdot \vec vtr(σ)=δijσij​=(3B+C+D)∇⋅v

    Thus

    σijtr=13(3B+C+D)(∇⋅v⃗)δij\sigma_{ij}^{\text{tr}}=\frac{1}3(3B+C+D)\left(\nabla\cdot \vec v\right)\delta_{ij}σijtr​=31​(3B+C+D)(∇⋅v)δij​
    σijtrf=−C+D3(∇⋅v⃗)δij+C+D2(∂vi∂xj+∂vj∂xi)\sigma_{ij}^\text{trf}=-\frac{C+D}3\left(\nabla\cdot \vec v\right)\delta_{ij}+\frac{C+D}2\left(\frac{\partial v_i}{\partial x^j}+\frac{\partial v_j}{\partial x^i}\right)σijtrf​=−3C+D​(∇⋅v)δij​+2C+D​(∂xj∂vi​​+∂xi∂vj​​)
  4. Redefine $\eta$ and $\zeta$ as

    η≡12(C+D),ζ≡13(3B+C+D)\eta\equiv \frac12(C+D),\quad\zeta\equiv\frac13(3B+C+D)η≡21​(C+D),ζ≡31​(3B+C+D)

    Finally, with only two free parameters, we may obtain

    σij=η[∂vi∂xj+∂vj∂xi−23(∇⋅v⃗)δij]+ζ(∇⋅v⃗)δij\sigma_{ij}=\eta\left[\frac{\partial v_i}{\partial x^j}+\frac{\partial v_j}{\partial x^i}-\frac23\left(\nabla\cdot \vec v\right)\delta_{ij}\right]+\zeta\left(\nabla\cdot \vec v\right)\delta_{ij}σij​=η[∂xj∂vi​​+∂xi∂vj​​−32​(∇⋅v)δij​]+ζ(∇⋅v)δij​
    • First term - traceless, pure shear viscosity

    • Second term - bulk viscosity

      When Stokes first derived this formula, he believed the bulk viscosity vanished. In fact this term is usually close to 0.

Navier-Stokes Equation

Right now,

Tij=−pδij+σijT^{ij}=-p\delta^{ij}+\sigma^{ij}Tij=−pδij+σij

and we can rewrite the momentum tensor by adding the viscous tensor

Πij=ρvivj+δijp−σij\Pi^{ij}=\rho v^iv^j+\delta^{ij}p-\sigma^{ij}Πij=ρvivj+δijp−σij

From this correction, the conservation of momentum (Euler equation) gives

Dv⃗Dt=1ρf⃗+1ρ∇⋅T=−1ρ∇p+1ρf⃗+1ρ∇⋅σ\frac{\text D\vec v}{\text Dt}=\frac1\rho\vec f+\frac1\rho\nabla\cdot\mathcal T=-\frac1\rho\nabla p+\frac1\rho\vec f+\frac1\rho\nabla\cdot\sigmaDtDv​=ρ1​f​+ρ1​∇⋅T=−ρ1​∇p+ρ1​f​+ρ1​∇⋅σ

Since

(∇⋅σ)i=η∂j[∂jvi+∂ivj−23∂kvkδij]+ζ∂j∂kvkδij=η[∇2vi+13∂i(∇⋅v⃗)]+ζ∂i(∇⋅v⃗)\begin{align*} (\nabla\cdot\sigma)_i&=\eta\partial^j\left[\partial_jv_i+\partial_iv_j-\frac23\partial_kv^k\delta_{ij}\right]+\zeta\partial^j\partial_kv^k\delta_{ij}\\ &=\eta\left[\nabla^2v_i+\frac13\partial_i(\nabla\cdot\vec v)\right]+\zeta\partial_i(\nabla\cdot\vec v) \end{align*}(∇⋅σ)i​​=η∂j[∂j​vi​+∂i​vj​−32​∂k​vkδij​]+ζ∂j∂k​vkδij​=η[∇2vi​+31​∂i​(∇⋅v)]+ζ∂i​(∇⋅v)​
  ⟺  ∇⋅σ=η∇2v⃗+(ζ+13η)∇(∇⋅v⃗)\iff \nabla\cdot\sigma=\eta\nabla^2\vec v+\left(\zeta+\frac13\eta\right)\nabla\left(\nabla\cdot\vec v\right)⟺∇⋅σ=η∇2v+(ζ+31​η)∇(∇⋅v)

Finally we derive the Navier-Stokes equation

∂v⃗∂t+(v⃗⋅∇)v⃗=−1ρ∇p+1ρf⃗+1ρη∇2v⃗+1ρ(ζ+13η)∇(∇⋅v⃗)\frac{\partial \vec v}{\partial t}+\left(\vec v\cdot \nabla\right)\vec v=-\frac1\rho\nabla p+\frac1\rho\vec f+\frac1\rho\eta\nabla^2\vec v+\frac1\rho\left(\zeta+\frac13\eta\right)\nabla\left(\nabla\cdot\vec v\right)∂t∂v​+(v⋅∇)v=−ρ1​∇p+ρ1​f​+ρ1​η∇2v+ρ1​(ζ+31​η)∇(∇⋅v)

In the end, let us consider the energy conservation in the viscous situation

DDt∭V(t)ρ(e+12v2)dV=∭V(t)f⃗⋅v⃗dV+∯S(t)t⃗⋅v⃗dS\frac{\text D}{\text D t}\iiint_{V(t)}\rho\left(e+\frac12 v^2\right)\text dV=\iiint_{V(t)}\vec f\cdot\vec v\text dV+\oiint_{S(t)}\vec t\cdot\vec v\text dSDtD​∭V(t)​ρ(e+21​v2)dV=∭V(t)​f​⋅vdV+∬​S(t)​t⋅vdS
  ⟺  ∭V(t)ρDDt(e+12v2)dV=∭V(t)f⃗⋅v⃗dV+∭V(t)∇⋅(T⋅v⃗)dV\iff \iiint_{V(t)}\rho\frac{\text D}{\text D t}\left(e+\frac12 v^2\right)\text dV=\iiint_{V(t)}\vec f\cdot\vec v\text dV+\iiint_{V(t)}\nabla\cdot\left(\mathcal T\cdot\vec v\right)\text dV⟺∭V(t)​ρDtD​(e+21​v2)dV=∭V(t)​f​⋅vdV+∭V(t)​∇⋅(T⋅v)dV
  ⟺  ρDDt(e+12v2)=f⃗⋅v⃗+∇⋅(T⋅v⃗)\iff\rho\frac{\text D}{\text D t}\left(e+\frac12 v^2\right)=\vec f\cdot\vec v+\nabla\cdot\left(\mathcal T\cdot\vec v\right)⟺ρDtD​(e+21​v2)=f​⋅v+∇⋅(T⋅v)

By multiplying N-S equation with $\rho\vec v$, we have

ρDDt(12v2)=f⃗⋅v⃗+v⃗⋅(∇⋅T)\rho\frac{\text D}{\text Dt}\left(\frac12v^2\right)=\vec f\cdot\vec v+\vec v\cdot\left(\nabla\cdot\mathcal T\right)ρDtD​(21​v2)=f​⋅v+v⋅(∇⋅T)
⇒ρDeDt=(T⋅∇)⋅v⃗\Rightarrow \rho\frac{\text De}{\text D t}=\left(\mathcal T\cdot\nabla\right)\cdot \vec v⇒ρDtDe​=(T⋅∇)⋅v

Now we expand the RHS

(T⋅∇)⋅v⃗=(∂ivj)Tij=−∂ivip+(∂ivj)σij=−p(∇⋅v⃗)+η(∂ivj)[2Eij−23(∇⋅v⃗)δij]+ζ(∂ivi)(∇⋅v⃗)=−p(∇⋅v⃗)+η(∂ivj)(∂jvi+∂ivj)+(ζ−23η)(∇⋅v⃗)2\begin{align*} \left(\mathcal T\cdot\nabla\right)\cdot \vec v&=(\partial_iv_j)T^{ij}\\ &=-\partial_iv^ip+(\partial_iv_j)\sigma^{ij}\\ &=-p(\nabla\cdot\vec v)+\eta(\partial_iv_j)\left[2E^{ij}-\frac23\left(\nabla\cdot \vec v\right)\delta_{ij}\right]+\zeta(\partial_iv^i)\left(\nabla\cdot \vec v\right)\\ &=-p(\nabla\cdot\vec v)+\eta(\partial_iv_j)(\partial^jv^i+\partial^iv^j)+\left(\zeta-\frac23\eta\right)\left(\nabla\cdot \vec v\right)^2 \end{align*}(T⋅∇)⋅v​=(∂i​vj​)Tij=−∂i​vip+(∂i​vj​)σij=−p(∇⋅v)+η(∂i​vj​)[2Eij−32​(∇⋅v)δij​]+ζ(∂i​vi)(∇⋅v)=−p(∇⋅v)+η(∂i​vj​)(∂jvi+∂ivj)+(ζ−32​η)(∇⋅v)2​

where

(∂ivj)(∂jvi+∂ivj)=12(∂ivj+∂jvi)(∂jvi+∂ivj)−12(∂ivj−∂jvi)(∂jvi+∂ivj)=2EijEij\begin{align*} (\partial_iv_j)(\partial^jv^i+\partial^iv^j)&=\frac12(\partial_iv_j+\partial_jv_i)(\partial^jv^i+\partial^iv^j)\\ &-\frac12(\partial_iv_j-\partial_jv_i)(\partial^jv^i+\partial^iv^j)\\ &=2E_{ij}E^{ij} \end{align*}(∂i​vj​)(∂jvi+∂ivj)​=21​(∂i​vj​+∂j​vi​)(∂jvi+∂ivj)−21​(∂i​vj​−∂j​vi​)(∂jvi+∂ivj)=2Eij​Eij​

as the second term obviously vanishes. Finally,

(T⋅∇)⋅v⃗=−p(∇⋅v⃗)+2ηEijEij+(ζ−23η)(∇⋅v⃗)2\left(\mathcal T\cdot\nabla\right)\cdot \vec v=-p(\nabla\cdot\vec v)+2\eta E_{ij}E^{ij}+\left(\zeta-\frac23\eta\right)\left(\nabla\cdot \vec v\right)^2(T⋅∇)⋅v=−p(∇⋅v)+2ηEij​Eij+(ζ−32​η)(∇⋅v)2

Define

Φvis=2ηEijEij+(ζ−23η)(∇⋅v⃗)2\Phi_\text{vis}=2\eta E_{ij}E^{ij}+\left(\zeta-\frac23\eta\right)\left(\nabla\cdot \vec v\right)^2Φvis​=2ηEij​Eij+(ζ−32​η)(∇⋅v)2

we have

ρ[DeDt+pDDt(1ρ)]=Φvis=ρTDsDt\rho\left[\frac{\text De}{\text D t}+p\frac{\text D}{\text Dt}\left(\frac1\rho\right)\right]=\Phi_\text{vis}=\rho T\frac{\text Ds}{\text Dt}ρ[DtDe​+pDtD​(ρ1​)]=Φvis​=ρTDtDs​

Thus,

DSDt=DDt∭VρsdV=∭VρDsDtdV=∭VΦvisTdV\frac{\text DS}{\text Dt}=\frac{\text D}{\text Dt}\iiint_{V}\rho s\text dV=\iiint_{V}\rho \frac{\text Ds}{\text Dt}\text dV=\iiint_{V}\frac{\Phi_\text{vis}}{T}\text dVDtDS​=DtD​∭V​ρsdV=∭V​ρDtDs​dV=∭V​TΦvis​​dV

The second law of thermaldynamics tells us

DSDt≥0\frac{\text DS}{\text Dt}\ge0DtDS​≥0

In fact, we can prove

Φvis≥0\Phi_\text{vis}\ge0Φvis​≥0

The Reynolds Number

The Reynolds number is defined as

Re=ULν\text{Re}=\frac{UL}{\nu}Re=νUL​

where $U$ is the flow speed, $L$ is a characteristic linear dimension, and $\nu$ is the kinematic viscosity. It is naturally connected with the Navier-Stokes equation when we try to derive a dimensionless form of the equation.

By assuming incompressible fluid ($\nabla\cdot \vec v=0$) and neglecting the external force, the Navier-Stokes equation goes like

∂v⃗∂t+(v⃗⋅∇)v⃗=−1ρ∇p+ν∇2v⃗\frac{\partial \vec v}{\partial t}+\left(\vec v\cdot \nabla\right)\vec v=-\frac1\rho\nabla p+\nu\nabla^2\vec v∂t∂v​+(v⋅∇)v=−ρ1​∇p+ν∇2v

Define several dimensionless quantities,

r′=rL,v⃗′=v⃗U,t′=tL/u,ρ′=ρρ0,p′=pρ0v2r'=\frac rL,\quad \vec v'=\frac{\vec v}{U},\quad t'=\frac{t}{L/u},\quad \rho'=\frac{\rho}{\rho_0},\quad p'=\frac{p}{\rho_0v^2}r′=Lr​,v′=Uv​,t′=L/ut​,ρ′=ρ0​ρ​,p′=ρ0​v2p​

We have

∂v⃗′∂t′+(v⃗′⋅∇′)v⃗′=−1ρ′∇′p′+νUL∇′2v⃗′≡−1ρ′∇′p′+1Re∇′2v⃗′\frac{\partial \vec v'}{\partial t'}+\left(\vec v'\cdot \nabla'\right)\vec v'=-\frac1\rho'\nabla' p'+\frac\nu{UL}\nabla'^2\vec v'\equiv -\frac1\rho'\nabla' p'+\frac1{\text{Re}}\nabla'^2\vec v'∂t′∂v′​+(v′⋅∇′)v′=−ρ1​′∇′p′+ULν​∇′2v′≡−ρ1​′∇′p′+Re1​∇′2v′

The Reynolds number is simply there.

If $\text{Re}\to\infty$, the equation goes back to the Euler equation (ideal fluid).

Small $\text{Re}$ corresponds to laminar flow, a fluid flowing in parallel layers with no disruption between the layers, while large $\text{Re}$ introduces annoying turbulence, a fluid motion characterized by chaotic changes in pressure and flow velocity. In astrophysics, $\text{Re}$ is usually large.

Notes

  1. Dimensionless Navier-Stokes equation does not depend on $\rho_0$ - scale-free. Once a hydrodynamical simulation is done with certain density, it is done with any other density. This beautiful scale-free law breaks when

    • $P-\rho$ relation is not a simple power-law, and has certain breaks.

    • the simulation has to take opacity/cooling/heating into account, none of which is scale-free.

  2. If we introduce gravity as the external force

    f⃗ext=−GMr2r⃗^\vec f_\text{ext}=-\frac{GM}{r^2}\hat{\vec r}f​ext​=−r2GM​r^

    the corresponding term in the dimensionless Naiver-Stokes equation is

    −1LU2GMr′2-\frac{1}{LU^2}\frac{GM}{r'^2}−LU21​r′2GM​

    It seems to have dependence on $M$, however, if we set

    U=c,L=rg≡GMc2U=c,\quad L=r_\text{g}\equiv\frac{GM}{c^2}U=c,L=rg​≡c2GM​

    where $r_\text g$ is the Schiwarzchild radius. This term is simply

    −1r′2-\frac1{r'^2}−r′21​

    Around a black hole, Navier-Stokes equation is again scale-free, this time for the mass of the accretor.

PreviousChapter 4. Spherically Symmetric FlowNextChapter 5. Accretion Disk Theory

Last updated 4 years ago

For the supermassive black hole (SMBH), this assumption gives a $t\text{vis}$ if 10 Gyr, which is orders of magtitude longer than the typical AGN timescale ($\sim$ Myr). At present, it is widely agreed that the causes the viscosity in accretion disks. In this case, the $l\text{mfp}$ is given by the thickness of the disk $H\sim0.01 r$, and the viscous timescale is quite satistying.

Magneto-Rotational Instability (MRI)