Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Gravity
  • Pressure Gradient Force
  • Hydrostatic Equilibrium
  1. 恒星结构与演化

Chapter 2. Hydrostatic Equilibrium

PreviousChapter 12. Post-Main SequenceNextChapter 6. Convection

Last updated 4 years ago

Approximation - star ~ sphere (no special direction)

In this way, the stellar density $\rho$ is only a function of $r$ (and $t$ since the star evolves).

  • Mass shell

    dm=4πρr2dr⇒∂m∂r=4πρr2\text dm=4\pi \rho r^2\text dr\Rightarrow \frac{\partial m}{\partial r}=4\pi\rho r^2dm=4πρr2dr⇒∂r∂m​=4πρr2

    At given $t=t_0$, $m(r,t_0)$ is used for the radial coordinate

    ∂∂r=4πr2ρ∂∂m\frac{\partial}{\partial r}=4\pi r^2\rho\frac{\partial}{\partial m}∂r∂​=4πr2ρ∂m∂​

Gravity

The gravitational acceleration $g$ is given by

g=−Gmr2g=-\frac{Gm}{r^2}g=−r2Gm​

where $G=6.67\times 10^{-8}$ in cgs units.

The gravitational field inside a star is given by a potential, which satisfies the Poisson equation

In a spherical system, we can rewrite it as

And the total gravitational force onto a volume $V$ is

Pressure Gradient Force

The force onto a this mass shell per unit area $\text dS$ due to pressure is

Thus the pressure gradient force onto a unit volume is given by

Hydrostatic Equilibrium

Again, in a spherical system.

This is known as the hydrostatic equlibrium, one of the most important equations in astrophysics.

  • Estimate the central temperature of the Sun ($M\odot=2\times 10^{33}$ g, $R\odot=7\times10^{10}$ cm)

    First we estimate the central pressure $P_c$, by assuming

    Here we adopt the median values of $m$ and $r$. $p_0\sim 0$ is the surface pressure. Thus

    Further assuming the ideal gas EoS

    where $\mu\approx 0.5$ is the mean molecular weight (ionized Hydrogen), thus the central temperature is

    Since $\rho_c>\bar\rho$, we have

    which means $T_c<3\times10^7$ K.

    Currently the most updated value is $T_c\simeq1.6\times10^7$ K, so our estimation is not bad.

So far, the acceleration of mass shells is neglected.

The EoM (only radial motion is considered) is give by

  • If there is no pressure

    $t_\text{ff}$ is known as the free-fall timescale.

  • If there is no gravity

    $t_\text{sc}$ is known as the sound-crossing timescale, since $c_s$ is the sound speed.

Therefore, hydrostatic equilibrium requires

This is generally satisfied in stellar interior.

∇2Φ=4πGρ\nabla^2\Phi=4\pi G\rho∇2Φ=4πGρ
1r2∂∂r(r2∂Φ∂r)=4πGρ\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\Phi}{\partial r}\right)=4\pi G\rhor21​∂r∂​(r2∂r∂Φ​)=4πGρ
F⃗G=∫Vρg⃗dV\vec F_G=\int_V \rho\vec g\text dVFG​=∫V​ρg​dV
f⃗P=−Pn⃗dS\vec f_P=-P\vec n\text dSf​P​=−PndS
F⃗P=−∮Pn⃗dS=−∫∇PdV\vec F_P=-\oint P\vec n\text dS=-\int\nabla P\text dVFP​=−∮PndS=−∫∇PdV
0=F⃗G+F⃗p=∫(ρg⃗−∇P)dV⇒−1ρ∇P+g⃗=00=\vec F_G+\vec F_p=\int\left(\rho \vec g-\nabla P\right)\text dV\Rightarrow -\frac1\rho \nabla P+\vec g=00=FG​+Fp​=∫(ρg​−∇P)dV⇒−ρ1​∇P+g​=0
1ρ∂P∂r=−Gmr2  ⟺  ∂P∂m=−Gm4πr4\frac1\rho\frac{\partial P}{\partial r}=-\frac{Gm}{r^2}\iff\frac{\partial P}{\partial m}=-\frac{Gm}{4\pi r^4}ρ1​∂r∂P​=−r2Gm​⟺∂m∂P​=−4πr4Gm​
∂P∂m∼P0−PcM⊙∼−G(M⊙/2)4π(R⊙/2)4\frac{\partial P}{\partial m}\sim\frac{P_0-P_c}{M_\odot}\sim -\frac{G\left(M_\odot/2\right)}{4\pi \left(R_\odot/2\right)^4}∂m∂P​∼M⊙​P0​−Pc​​∼−4π(R⊙​/2)4G(M⊙​/2)​
Pc∼2GM⊙2πR⊙4P_c\sim\frac{2GM_\odot^2}{\pi R_\odot^4}Pc​∼πR⊙4​2GM⊙2​​
Pc=ρckBTcμmpP_c=\frac{\rho_ck_BT_c}{\mu m_\text{p}}Pc​=μmp​ρc​kB​Tc​​
kBTc∼2μmpGM⊙2πρcR⊙4k_BT_c\sim\frac{2\mu m_\text{p}GM_\odot^2}{\pi \rho_c R_\odot^4}kB​Tc​∼πρc​R⊙4​2μmp​GM⊙2​​
kBTc<8GM⊙3R⊙μmp∼3 keVk_BT_c<\frac{8 GM_\odot}{3 R_\odot}\mu m_\text{p}\sim 3\text{ keV}kB​Tc​<3R⊙​8GM⊙​​μmp​∼3 keV
∂2r∂t2=−1ρ∂P∂r−Gmr2\frac{\partial^2 r}{\partial t^2}=-\frac1\rho\frac{\partial P}{\partial r}-\frac{Gm}{r^2}∂t2∂2r​=−ρ1​∂r∂P​−r2Gm​
∂2r∂t2=−Gmr2≡rtff2⇒t∼tff≡r3Gm∼1Gρ\frac{\partial^2 r}{\partial t^2}=-\frac{Gm}{r^2}\equiv\frac{r}{t_\text{ff}^2}\Rightarrow t\sim t_\text{ff}\equiv\sqrt{\frac{r^3}{Gm}}\sim\frac1{\sqrt{G\rho}}∂t2∂2r​=−r2Gm​≡tff2​r​⇒t∼tff​≡Gmr3​​∼Gρ​1​
rtsc2≡1ρPr⇒tsc≡rP/ρ∼rcs\frac{r}{t_\text{sc}^2}\equiv\frac{1}{\rho}\frac{P}{r}\Rightarrow t_\text{sc}\equiv\frac{r}{\sqrt{P/\rho}}\sim \frac{r}{c_s}tsc2​r​≡ρ1​rP​⇒tsc​≡P/ρ​r​∼cs​r​
tff≃tsct_\text{ff}\simeq t_\text{sc}tff​≃tsc​