Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Integral and constants of motion
  • Discuss the integrals in a spherical potential
  • Axisymmetric potential $\Phi(R,z)$
  • Surfaces of section
  • Nearly circular orbits
  1. 天体物理动力学

Week5: Orbits

Integral and constants of motion

In spherical potential, we consider the degrees of freedom of the system. In the Hamiltonian, we have six free parameters, that is, the generalized coordinates and momenta

(x,y,z,px,py,pz) or (r,θ,ϕ,pr,pθ,pϕ)(x,y,z,p_x,p_y,p_z) \text{ or } (r,\theta,\phi,p_r,p_\theta,p_\phi)(x,y,z,px​,py​,pz​) or (r,θ,ϕ,pr​,pθ​,pϕ​)

The vanished partial derivative of $H$ (with respect to $t$ and $\alpha$, see in last week's notes) conserves the energy and the angular momentum (three-dimensions), thus the DoF is reduced by four.

In general, to simplify our analysis, we would like to find out some integrals as functions of only the coordinates in the phase-space

I(q⃗,p⃗)=CI(\vec q,\vec p)=CI(q​,p​)=C

to help us reduce the DoF.

More generally we can discuss constants of motion, which are functions of both the coordinates in the phase-space and time, but is invariant in an orbit. Integrals are constants of motions, while the converse is not necessarily true.

Discuss the integrals in a spherical potential

Can we find a fifth integral in a spherical potential?

With the general form of how $u=1/r$ is related to $\psi$ in a plane

d2udψ2+u=1L2u2dΦdr(1/u)\frac{\mathrm{d}^{2} u}{\mathrm{d} \psi^{2}}+u=\frac{1}{L^{2} u^{2}} \frac{\mathrm{d} \Phi}{\mathrm{d} r}(1 / u)dψ2d2u​+u=L2u21​drdΦ​(1/u)

we examine the potential

Φ(r)=−GM(1r+ar2)⇒∂rΦ(r)=GM(1r2+2ar3)\Phi(r)=-GM\left(\frac1r+\frac{a}{r^2}\right)\Rightarrow \partial_r\Phi(r)=GM\left(\frac{1}{r^2}+\frac{2a}{r^3}\right)Φ(r)=−GM(r1​+r2a​)⇒∂r​Φ(r)=GM(r21​+r32a​)

so that

d2udψ2+(1−2GMaL2)u=GML2\frac{\mathrm{d}^{2} u}{\mathrm{d} \psi^{2}}+\left(1-\frac{2 G M a}{L^{2}}\right) u=\frac{G M}{L^{2}}dψ2d2u​+(1−L22GMa​)u=L2GM​

The general solution is

u=Ccos⁡(ψ−ψ0K)+GMK2L2,K=(1−2GMaL2)−1/2u=C \cos \left(\frac{\psi-\psi_{0}}{K}\right)+\frac{G M K^{2}}{L^{2}},\quad K=\left(1-\frac{2GMa}{L^2}\right)^{-1/2}u=Ccos(Kψ−ψ0​​)+L2GMK2​,K=(1−L22GMa​)−1/2

Hence

ψ−ψ0K=±arccos⁡[1C(1r−GMK2L2)]+2πn,n∈N\frac{\psi-\psi_{0}}{K}=\pm\arccos\left[\frac{1}{C}\left(\frac{1}{r}-\frac{G M K^{2}}{L^{2}}\right)\right]+2\pi n,\quad n\in NKψ−ψ0​​=±arccos[C1​(r1​−L2GMK2​)]+2πn,n∈N

which is a function of $r, E, L$

  • Non-isolating integrals: If $K$ is irrational, we can make $\psi-\psi_0$ modulo $2\pi$ approximately any given number as closely as we wish, so given $r, E, L$, an orbit that is known to have a given value of the integral $\psi_0$ can have an azimuthal angle as close as we please to any number between $0$ and $2\pi$.

    As a result, even if we select a $\psi_0$ randomly, the phase-space distribution of an orbit will not be affected

  • Isolating integrals: If $K$ is rational, say, $K=k_1/k_2$ where $k_1,k_2\in N$

    ψ−ψ0≡±arccos⁡[1C(1r−GMK2L2)]+2πnk1k2(mod  2π)\psi-\psi_0\equiv \pm\arccos\left[\frac{1}{C}\left(\frac{1}{r}-\frac{G M K^{2}}{L^{2}}\right)\right]+2\pi \frac{nk_1}{k_2}\quad(\mod 2\pi)ψ−ψ0​≡±arccos[C1​(r1​−L2GMK2​)]+2πk2​nk1​​(mod2π)

    Since $nk_1$ modulo $k_2$ has no more than $k_2$ possible values, the number of $\psi$ is also limited

Axisymmetric potential $\Phi(R,z)$

The Lagrangian

L=12[R˙2+R2ϕ˙2+z˙2]−Φ(R,z)\mathcal L=\frac12\left[\dot R^2+R^2\dot\phi^2+\dot z^2\right]-\Phi(R,z)L=21​[R˙2+R2ϕ˙​2+z˙2]−Φ(R,z)

Generalized momenta

pR=R˙,pϕ=R2ϕ,p(z)=z˙p_R=\dot R,\quad p_\phi=R^2\phi,\quad p(z)=\dot zpR​=R˙,pϕ​=R2ϕ,p(z)=z˙

The Hamiltonian

H=12(pR2+pϕ2R2+pz2)+Φ(R,z)H=\frac12\left(p_R^2+\frac{p_\phi^2}{R^2}+p_z^2\right)+\Phi(R,z)H=21​(pR2​+R2pϕ2​​+pz2​)+Φ(R,z)
⇒{p˙R=−∂H∂R=pϕ2R3−∂∂RΦ(R,z)p˙ϕ=−∂H∂ϕ=0⇒pϕ≡Lzp˙z=−∂H∂z=−∂∂zΦ(R,z)\Rightarrow\left\{ \begin{align*} \dot p_R&=-\frac{\partial H}{\partial R}=\frac{p_\phi^2}{R^3}-\frac{\partial }{\partial R}\Phi(R,z)\\ \dot p_\phi&=-\frac{\partial H}{\partial \phi}=0\quad \Rightarrow p_\phi\equiv L_z\\ \dot p_z&=-\frac{\partial H}{\partial z}=-\frac{\partial}{\partial z}\Phi(R,z)\\ \end{align*} \right.⇒⎩⎨⎧​p˙​R​p˙​ϕ​p˙​z​​=−∂R∂H​=R3pϕ2​​−∂R∂​Φ(R,z)=−∂ϕ∂H​=0⇒pϕ​≡Lz​=−∂z∂H​=−∂z∂​Φ(R,z)​

We can also define an effective potential to be

Φeff≡Lz22R2+Φ(R,z)\Phi_{eff}\equiv\frac{L_z^2}{2R^2}+\Phi(R,z)Φeff​≡2R2Lz2​​+Φ(R,z)

so that

p˙R=R¨=−∂Φeff∂R,p˙z=z¨=−∂Φeff∂z\dot p_R=\ddot R=-\frac{\partial \Phi_{eff}}{\partial R},\quad \dot p_z=\ddot z=-\frac{\partial \Phi_{eff}}{\partial z}p˙​R​=R¨=−∂R∂Φeff​​,p˙​z​=z¨=−∂z∂Φeff​​

In this way, the 3-D motion can be reduced to a 2-D one in the $(R,z)$ plane (meridional plane) under the Hamiltonion

H=H=12(pR2+pz2)+Φeff(R,z)H=H=\frac12\left(p_R^2+p_z^2\right)+\Phi_{eff}(R,z)H=H=21​(pR2​+pz2​)+Φeff​(R,z)

The orbit is, obviously, restricted to the area in the meridional plane satisfying $E\ge \Phi_{eff}$

Consider the minimum of $\Phi_{eff}(R,z)$, where

0=∂Φeff∂R=∂Φ∂R−Lz2R3,0=∂Φeff∂z0=\frac{\partial \Phi_{{eff}}}{\partial R}=\frac{\partial \Phi}{\partial R}-\frac{L_{z}^{2}}{R^{3}}, \quad 0=\frac{\partial \Phi_{{eff}}}{\partial z}0=∂R∂Φeff​​=∂R∂Φ​−R3Lz2​​,0=∂z∂Φeff​​

The latter is satisfied everywhere on the $z=0$ plane, assuming the symmetry of $\Phi$ with respect to this plane. And when the former is also satisfied

(∂Φ∂R)(Rg,0)=Lz2Rg3=Rgϕ˙2\left(\frac{\partial \Phi}{\partial R}\right)_{(R_g,0)}=\frac{L_z^2}{R_g^3}=R_g\dot\phi^2(∂R∂Φ​)(Rg​,0)​=Rg3​Lz2​​=Rg​ϕ˙​2

which is simply the condition for a circular orbit with angular speed $\dot\phi$. $R_g$ is known as the guiding-center radius, since $(R_g,0)$ is the center of a group of closed isopotential curves.

Surfaces of section

When it is difficult to visualize the 4-D motion ($R,z,p_R,p_z$), we can determine whether orbits in the $(R,z)$ plane admit an additional isolating integral.

Since the Hamiltonian is a constant, we could plot the motion in the reduced phase space, say $(R,z,p_R)$, and $|p_z|$ will be determined.

An even simpler solution for visualizing the 4-D motion indirectly is to plot the points where the star crosses some plane, say $z=0$. Such a plot is known as a surface of section.

  • Consequents: the points $(R,p_R)$ where a star crosses the plane $z=0$ (when $p_z>0$ to remove the sign ambiguity in $p_z$)

  • Zero-velocity curve: the curve bounding the possible orbits in the plane $z=0$, on which $E=\Phi_{eff}$

  • Shell orbit: the trajectory of the star restricted to a 2-D motion

  • Invariant curve: a smooth curve on which the consequents of an orbit lie, suggesting the existence of some isolating integral $I(R,pR){z=0}=Const$ - the third integral, no analytical form

Nearly circular orbits

Now we take a look at some nearly circular orbits. Since they are close to circles, $R$ should not be far from $R_g$ ($z=0$) and we can define $x=R-R_g$ to be the separation, with which we expand the effective potential

Φeff(R)=Φeff(Rg)+12∂2Φeff∂R2∣(Rg,0)x2+12∂2Φeff∂z2∣(Rg,0)z2+O(xz2)\Phi_{eff}(R)=\Phi_{eff}(R_g)+\frac12\frac{\partial^2\Phi_{eff}}{\partial R^2}\Bigg|_{(R_g,0)}x^2+\frac12\frac{\partial^2\Phi_{eff}}{\partial z^2}\Bigg|_{(R_g,0)}z^2+\mathcal O({xz^2})Φeff​(R)=Φeff​(Rg​)+21​∂R2∂2Φeff​​​(Rg​,0)​x2+21​∂z2∂2Φeff​​​(Rg​,0)​z2+O(xz2)

The first-order derivatives both vanish, as well as the second-order mixed partial derivative, because $\Phi_{eff}$ is assumed to be symmetric about $z=0$

Two new quantities are thus defined

κ2(Rg)≡(∂2Φeff∂R2)(Rg,0)=(∂2Φ∂R2)(Rg,0)+3Rg(∂Φ∂R)(Rg,0)\kappa^{2}\left(R_{\mathrm{g}}\right) \equiv\left(\frac{\partial^{2} \Phi_{\mathrm{eff}}}{\partial R^{2}}\right)_{\left(R_{\mathrm{g}}, 0\right)}=\left(\frac{\partial^2\Phi}{\partial R^2}\right)_{(R_g,0)}+\frac3{R_g}\left(\frac{\partial \Phi}{\partial R}\right)_{(R_g,0)}κ2(Rg​)≡(∂R2∂2Φeff​​)(Rg​,0)​=(∂R2∂2Φ​)(Rg​,0)​+Rg​3​(∂R∂Φ​)(Rg​,0)​
ν2(Rg)≡(∂2Φeff∂z2)(Rg,0)=(∂2Φ∂z2)(Rg,0)\nu^{2}\left(R_{\mathrm{g}}\right) \equiv\left(\frac{\partial^{2} \Phi_{\mathrm{eff}}}{\partial z^{2}}\right)_{\left(R_{\mathrm{g}}, 0\right)}=\left(\frac{\partial^{2} \Phi}{\partial z^{2}}\right)_{\left(R_{\mathrm{g}}, 0\right)}ν2(Rg​)≡(∂z2∂2Φeff​​)(Rg​,0)​=(∂z2∂2Φ​)(Rg​,0)​

so that

x¨=−κ2x,z¨=−ν2z\ddot x=-\kappa^2x,\quad \ddot z=-\nu^2zx¨=−κ2x,z¨=−ν2z

We call $\kappa$ and $\nu$ epicycle frequency and vertical frequency, respectively.

Since the circular frequency $\Omega$ is given by

Ω2(R)=1R(∂Φ∂R)(R,0)=Lz2R4\Omega^2(R)=\frac{1}{R}\left(\frac{\partial \Phi}{\partial R}\right)_{(R,0)}=\frac{L_z^2}{R^4}Ω2(R)=R1​(∂R∂Φ​)(R,0)​=R4Lz2​​

we can rewrite $\kappa$ as

κ2(Rg)=[∂∂R(RΩ2)+3Ω2]Rg=[R∂Ω2∂R+4Ω2]Rg\kappa^2(R_g)=\left[\frac{\partial}{\partial R}(R\Omega^2)+3\Omega^2\right]_{R_g}=\left[R\frac{\partial \Omega^2}{\partial R}+4\Omega^2\right]_{R_g}κ2(Rg​)=[∂R∂​(RΩ2)+3Ω2]Rg​​=[R∂R∂Ω2​+4Ω2]Rg​​

In this way, the radius and azimuthal periods are simply

Tr=2πκ,Tψ=2πΩT_r=\frac{2\pi}{\kappa},\quad T_\psi=\frac{2\pi}{\Omega}Tr​=κ2π​,Tψ​=Ω2π​

Then

1<TψTr<2⇒1<κΩ<2⇒Ω<κ<2Ω1<\frac{T_\psi}{T_r}<2\Rightarrow 1<\frac{\kappa}{\Omega}<2\Rightarrow \Omega<\kappa<2\Omega1<Tr​Tψ​​<2⇒1<Ωκ​<2⇒Ω<κ<2Ω

If we further define the so-called Oort constants to be

A≡12(vcR−dvcdR)=−12RdΩdRA\equiv\frac{1}{2}\left(\frac{v_{\mathrm{c}}}{R}-\frac{\mathrm{d} v_{\mathrm{c}}}{\mathrm{d} R}\right)=-\frac{1}{2} R \frac{\mathrm{d} \Omega}{\mathrm{d} R}A≡21​(Rvc​​−dRdvc​​)=−21​RdRdΩ​
B≡−12(vcR+dvcdR)=−(Ω+12RdΩdR)B\equiv -\frac{1}{2}\left(\frac{v_{\mathrm{c}}}{R}+\frac{\mathrm{d} v_{\mathrm{c}}}{\mathrm{d} R}\right)=-\left(\Omega+\frac{1}{2} R \frac{\mathrm{d} \Omega}{\mathrm{d} R}\right)B≡−21​(Rvc​​+dRdvc​​)=−(Ω+21​RdRdΩ​)

which are much easier to be measured, then

Ω=A−B,κ2=−4BΩ\Omega=A-B,\quad \kappa^2=-4B\OmegaΩ=A−B,κ2=−4BΩ

Now that we have measured $\kappa,\Omega,\nu$, how can we determine the properties of the galaxy, say, the density distribution $\rho(R,z)$?

Again we solve the Poisson equation, but in cylindrical coordinates

4πGρ=∇2Φ=1R∂∂R(R∂Φ∂R)+∂2Φ∂z2=1R∂vc2∂R+ν2≈ν2\begin{align*} 4\pi G\rho&=\nabla^2\Phi\\ &=\frac{1}{R}\frac{\partial}{\partial R}\left(R\frac{\partial \Phi}{\partial R}\right)+\frac{\partial^2 \Phi}{\partial z^2}\\ &=\frac{1}{R}\frac{\partial v_c^2}{\partial R}+\nu^2\approx\nu^2 \end{align*}4πGρ​=∇2Φ=R1​∂R∂​(R∂R∂Φ​)+∂z2∂2Φ​=R1​∂R∂vc2​​+ν2≈ν2​

since $v_c$ is approximately a constant.

On the other hand, if the mass distribution is approximately spherical, we have

Ω2∼GMR3=43πGρˉ\Omega^2\sim\frac{GM}{R^3}=\frac43\pi G\bar\rhoΩ2∼R3GM​=34​πGρˉ​

where $\bar\rho$ is the mean density within radius $R$, so

κ2=[R∂Ω2∂R+4Ω2]Rg=[R∂(vc/R)2∂R+4Ω2]Rg∼2Ω2=83πGρˉ\kappa^2=\left[R\frac{\partial \Omega^2}{\partial R}+4\Omega^2\right]_{R_g}=\left[R\frac{\partial (v_c/R)^2}{\partial R}+4\Omega^2\right]_{R_g}\sim2\Omega^2=\frac{8}{3}\pi G\bar\rhoκ2=[R∂R∂Ω2​+4Ω2]Rg​​=[R∂R∂(vc​/R)2​+4Ω2]Rg​​∼2Ω2=38​πGρˉ​

Thus

ν2κ2(R)≃3ρ(R)2ρˉ\frac{\nu^2}{\kappa^2}(R)\simeq\frac{3\rho(R)}{2\bar\rho}κ2ν2​(R)≃2ρˉ​3ρ(R)​

In this way, the ratio $\nu^2/\kappa^2$ reflects the degree to which the galactic material is concentrated

Consider the radial motion more specifically, we have the general solution

x(t)=Xcos⁡(κt+α)x(t)=X\cos(\kappa t+\alpha)x(t)=Xcos(κt+α)

The corresponding angular speed $\dot \phi$ is

ϕ˙=Lz(Rg+x)2≃LzRg2(1−2xRg)=Ω(1−2xRg)\dot\phi=\frac{L_z}{(R_g+x)^2}\simeq \frac{L_z}{R_g^2}\left(1-\frac{2x}{R_g}\right)= \Omega\left(1-\frac{2x}{R_g}\right)ϕ˙​=(Rg​+x)2Lz​​≃Rg2​Lz​​(1−Rg​2x​)=Ω(1−Rg​2x​)
⇒ϕ=ϕ0+Ωt−2ΩRg⋅Xκsin⁡(κt+α)≡ϕ0+Ωt−γXRgsin⁡(κt+α)\Rightarrow\phi=\phi_0+\Omega t-\frac{2\Omega}{R_g}\cdot\frac{X}{\kappa}\sin(\kappa t+\alpha)\equiv\phi_0+\Omega t-\gamma\frac{X}{R_g}\sin(\kappa t+\alpha)⇒ϕ=ϕ0​+Ωt−Rg​2Ω​⋅κX​sin(κt+α)≡ϕ0​+Ωt−γRg​X​sin(κt+α)

where

γ≡2Ωκ=−κ2B\gamma\equiv\frac{2\Omega}{\kappa}=-\frac{\kappa}{2B}γ≡κ2Ω​=−2Bκ​

Now we try to understand the shape of the epicycle, which, to the first order, should be an ellipse. The X-semi-axis is obviously $X$, while in the $y$ direction perpendicular to both $x$ and $z$

y=ΔϕRg=−γXsin⁡(κt+α)⇒Y=γXy=\Delta\phi R_g=-\gamma X\sin(\kappa t+\alpha)\Rightarrow Y=\gamma Xy=ΔϕRg​=−γXsin(κt+α)⇒Y=γX

Thus

∣XY∣=κ2Ω\left|\frac XY\right|=\frac{\kappa}{2\Omega}​YX​​=2Ωκ​

Usually

12<∣XY∣<1\frac12<\left|\frac XY\right|<121​<​YX​​<1

while $X/Y=1/2$ for Kepler potential and $X/Y=1$ for harmonic oscillator potential (homogeneous sphere).

PreviousWeek6: OrbitsNextWeek4: Orbits

Last updated 4 years ago