Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Cosmological Redshifts
  • Time Evolution of the Hubble Parameter
  • Redshift vs. Time
  • Cosmological Distances
  • Proper Distance
  • The Horizon
  • Angular Diameter Distance
  • Luminosity Distance
  • The deceleration parameter
  1. 物理宇宙学基础

Chapter 5 Redshifts and Distances

PreviousChapter 6 Supernova cosmologyNextChapter 4 World Models

Last updated 4 years ago

Cosmological Redshifts

1+ze=a0a(t=e)1+z_e=\frac{a_0}{a(t=e)}1+ze​=a(t=e)a0​​

$e$ stands for the era when the photons were emitted

  • For r > 4200 Mpc, the receding velocity is larger than the speed of light

PROOF

  • RW metric

    (ds)2=(cdt)2−a2(t)[dr21−kr2+r2(dθ2+sin⁡2θdϕ2)](d s)^{2}=(c d t)^{2}-a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right](ds)2=(cdt)2−a2(t)[1−kr2dr2​+r2(dθ2+sin2θdϕ2)]
    • None geodesic means $ds=0$ - propagation of light

    • Observer $r=0$

    • Radial geodesic $d\theta=d\phi=0$

    Then the equation reduces to

    cdta(t)=±dr(1−kr2)1/2\frac{c d t}{a(t)}=\pm \frac{d r}{\left(1-k r^{2}\right)^{1 / 2}}a(t)cdt​=±(1−kr2)1/2dr​
  • Imagine one crest of the light wave was emitted at $(t_e, r_e)$ and received at $(t_0,0)$, and the next crest was emitted at $(t_e+dt_e, r_e)$ (the comoving distance did not change) and received at $(t_0+dt_0,0)$

  • The time it takes for successive crests to travel to earth

    ∫tet0dta(t)=−1c∫re0dr1−kr2\int_{t_{e}}^{t_{0}} \frac{d t}{a(t)}=-\frac{1}{c} \int_{r_{e}}^{0} \frac{d r}{\sqrt{1-k r^{2}}}∫te​t0​​a(t)dt​=−c1​∫re​0​1−kr2​dr​

    'minus' means the light travels toward us

    For the two crests we have

    ∫te+Δtet0+Δt0dta(t)−∫tet0dta(t)=0\int_{t_{e}+\Delta t_{e}}^{t_{0}+\Delta t_{0}} \frac{d t}{a(t)}-\int_{t_{e}}^{t_{0}} \frac{d t}{a(t)}=0∫te​+Δte​t0​+Δt0​​a(t)dt​−∫te​t0​​a(t)dt​=0

    But

    ∫te+Δtet0+Δt0dta(t)=∫tet0dta(t)+∫t0t0+Δt0dta(t)−∫tete+Δtedta(t)⇒∫t0t0+Δt0dta(t)=∫tete+Δtedta(t)\int_{t_{e}+\Delta t_{e}}^{t_{0}+\Delta t_{0}} \frac{d t}{a(t)}=\int_{t_{e}}^{t_{0}} \frac{d t}{a(t)}+\int_{t_{0}}^{t_{0}+\Delta t_{0}} \frac{d t}{a(t)}-\int_{t_{e}}^{t_{e}+\Delta t_{e}} \frac{d t}{a(t)}\\ \Rightarrow \int_{t_{0}}^{t_{0}+\Delta t_{0}} \frac{d t}{a(t)}=\int_{t_{e}}^{t_{e}+\Delta t_{e}} \frac{d t}{a(t)}∫te​+Δte​t0​+Δt0​​a(t)dt​=∫te​t0​​a(t)dt​+∫t0​t0​+Δt0​​a(t)dt​−∫te​te​+Δte​​a(t)dt​⇒∫t0​t0​+Δt0​​a(t)dt​=∫te​te​+Δte​​a(t)dt​
  • $\Delta t_0$ and $\Delta t_e$ are so small that $a(t)$ is nearly a constant during those periods

    ΔteΔt0=a(te)a(t0)\frac{\Delta t_{e}}{\Delta t_{0}}=\frac{a\left(t_{e}\right)}{a\left(t_{0}\right)}Δt0​Δte​​=a(t0​)a(te​)​
  • $\Delta t$ reflects the frequency, in fact

    λ=cΔt\lambda=c\Delta tλ=cΔt

    and therefore

    λ0λe=1+z=a(t0)a(te)⇒a(te)=(1+z)−1\frac{\lambda_{0}}{\lambda_{e}}=1+z=\frac{a\left(t_{0}\right)}{a\left(t_{e}\right)}\Rightarrow a(t_e)=(1+z)^{-1}λe​λ0​​=1+z=a(te​)a(t0​)​⇒a(te​)=(1+z)−1
  • $z$ as a measure for time

Time Evolution of the Hubble Parameter

  • Friedmann equation

    The definition of $\Omega_k$

    Then

    • Einstein-de Sitter cosmology ($\Omega_{m,0}=1$)

    • Today's consensus cosmology ($\Omega_{k,0}=0$)

    • A more general model including radiation

      for radiation density reduces

      • Volume $V\propto a^{-3}$

      • Energy per photon $\epsilon\propto\nu\propto a^{-1}$

      • Only import at high redshift, early universe (high temperature) - radiation drives the early expansion

      Note that $\Omega{\mathrm{m}, 0}(1+z)^{3}\sim\Omega{\Lambda, 0}$ gives $z\sim0.3$, for smaller $z$ the dark energy dominates

Redshift vs. Time

  • The definition of Hubble parameter

    The scale factor

    and therefore

    again, if $t_1>t_2$ we have $z_1<z_2$

  • The age of the Universe

    • Einstein-de Sitter model

Cosmological Distances

Proper Distance

The distance between event A and B, which happens simultaneously - a universal time $t$ - only useful when $s/c\ll1/H$

  • RW Metric

  • Three solutions

    • Flat universe, $k=0$, the proper distance is the coordinate distance

    • Positive curvature, $k=1$, $s(t)>a(t)\cdot r$

The Horizon

  • Proper distance to the furthest observable point, the particle horizon, at time $t$, is the horizon distance $S_h(t)$

  • $(0, r_{hor})\to(t,0)$, consider photons, $ds=0,d\theta=d\phi=0$

    for which we find that

    where $r_{hor}$ is the radial coordinate distance

  • If $k=0$

    Thus

    And

  • At 4300 Mpc, the receding velocity is larger than the speed of light, but the horizon is larger than 4300 Mpc

    • What we see NOW are the photons emitted in the past, when the universe was much smaller

  • If $a(t)\propto t^\alpha$ for small $t$ ($\alpha\ge1$), $r_{hor}$ diverges as we approach $t=0$ - no particle horizon

  • But if we consider the proper distance from the origin to $r_{hor}$

    For zero curvature

    • In a radiational-dominated Universe, $a(t)\propto t^{1/2}$

    • In a radiational-dominated Universe, $a(t)\propto t^{2/3}$

    These distances are larger than $ct$

  • REASON: in order to actually measure the size of the visible Universe at the present time, we would have to devise some contrived scenario—such as adding up distances measured by observers spread throughout the Universe all making measurements at the same time

  • The event horizon - similar to the particle horizon, but set the limit on communications to the future

    • the particle horizon represents the largest comoving distance from which light could have reached the observer by a specific time

    • the event horizon is the largest comoving distance from which light emitted now can ever reach the observer in the future

    $t\to t_{max}$ - admissible time

    • finite for closed models

    • infinite for flat and open universe

Angular Diameter Distance

Consider a light source of size $D$ at $r=r_1, t=t_1$ subtending an angle $\delta\theta$ at the origin ($r=0,t=t_0$) . The proper distance between the two ends of object

Angular diameter

Angular diameter distance

  • Consider again the propagation of light, $ds=0$

    where

    Thus

  • $d(z)$ depends on comological parameters $\Omega{\Lambda, 0}, \Omega{\mathrm{k}, 0}, \Omega{\mathrm{m}, 0}$, while $\Omega{k,0}=0$ according to the consensus cosmology today

  • In some cosmologies $dA(z)$ is not monotonically increasing function of $z$, for a given proper size $D$ will subtend a minimum angle $\delta\theta$ at $z=z{max}$

    • When the light rays were emitted, the universe was smaller and certain proper diameter distance occupied a larger coordinate size

    • $z_{max}$ stands for an emission distance equal to the particle horizon at the time of emission

    • Einstein-de Sitter cosmology - $z_{max}=1.25$

      A galaxy cluster of typical diameter 1 Mpc, would never subtend on the sky an angle smaller than

Luminosity Distance

$L$ is the absolute bolometric luminosity (all wavelengths), but is not observable, and $F$ is the observed flux

  • The photons emitted are spread out over the surface of a sphere

  • but the total power received at $r_1$ is not the same with the total power emitted because of the red shift

    • Emitted - wavelength $\lambda_1$ in time interval $\delta t_1$

    • Received - wavelength $\lambda_0$ in time interval $\delta t_0$

    • Wavelengths and time intervals are related by

      while the energy of a single photon is $hc/\lambda$, the energy emitted/received in time interval $\delta t$ is thus

      hence the ratio of received flux and emitted flux is

  • The flux measured on the surface of the sphere is then

    for $a_0=1$, we have

    or

The deceleration parameter

  • $r_1$ - radial distance

  • $d_P$ - proper distance

  • $d_A$ - angular distance

  • $d_L$ - luminosity distance

  • For small $z$ and small $r_1$

  • For small $z$, using Taylor expansion

    where

  • The parameter

    is called deceleration parameter

    • $q<0$ , acceleration of expansion

    • $q>0$, slowing down of expansion

    • At present - accelerating

  • The approximation of luminosity distance for small $z$

a˙2=H02Ωm,0a−1+H02ΩΛ,0a2−k\dot{a}^{2}=H_{0}^{2} \Omega_{\mathrm{m}, 0} a^{-1}+H_{0}^{2} \Omega_{\Lambda, 0} a^{2}-ka˙2=H02​Ωm,0​a−1+H02​ΩΛ,0​a2−k
Ωk≡−k/(aH)2\Omega_{\mathrm{k}} \equiv-k /(a H)^{2}Ωk​≡−k/(aH)2
(H(z)H0)2=Ωm,0⋅(1+z)3+Ωk,0⋅(1+z)2+ΩΛ,0≡E(z)\left(\frac{H(z)}{H_{0}}\right)^{2}=\Omega_{\mathrm{m}, 0} \cdot(1+z)^{3}+\Omega_{\mathrm{k}, 0} \cdot(1+z)^{2}+\Omega_{\Lambda, 0}\equiv E(z)(H0​H(z)​)2=Ωm,0​⋅(1+z)3+Ωk,0​⋅(1+z)2+ΩΛ,0​≡E(z)
H(z)=H0⋅E(z)1/2H(z)=H_{0} \cdot E(z)^{1 / 2}H(z)=H0​⋅E(z)1/2
H(z)=H0⋅(1+z)3/2H(z)=H_{0} \cdot(1+z)^{3 / 2}H(z)=H0​⋅(1+z)3/2
H(z)=H0⋅Ωm,0⋅(1+z)3+ΩΛ,0H(z)=H_{0} \cdot \sqrt{\Omega_{\mathrm{m}, 0} \cdot(1+z)^{3}+\Omega_{\Lambda, 0}}H(z)=H0​⋅Ωm,0​⋅(1+z)3+ΩΛ,0​​
H(z)H0=Ωm,0(1+z)3+Ωrad,0(1+z)4+Ωk,0(1+z)2+ΩΛ,0\frac{H(z)}{H_{0}}=\sqrt{\Omega_{\mathrm{m}, 0}(1+z)^{3}+\Omega_{\mathrm{rad}, 0}(1+z)^{4}+\Omega_{\mathrm{k}, 0}(1+z)^{2}+\Omega_{\Lambda, 0}}H0​H(z)​=Ωm,0​(1+z)3+Ωrad,0​(1+z)4+Ωk,0​(1+z)2+ΩΛ,0​​
ρ∝a−4\rho\propto a^{-4}ρ∝a−4
H(z)≡dadt1a=dadzdzdt(1+z)a0H(z) \equiv \frac{d a}{d t} \frac{1}{a}=\frac{d a}{d z} \frac{d z}{d t} \frac{(1+z)}{a_{0}}H(z)≡dtda​a1​=dzda​dtdz​a0​(1+z)​
a=a01+z⇒da=−a0(1+z)2dza=\frac{a_{0}}{1+z} \Rightarrow d a=-\frac{a_{0}}{(1+z)^{2}} d za=1+za0​​⇒da=−(1+z)2a0​​dz
dt=−dzH(z)(1+z)d t=-\frac{d z}{H(z)(1+z)}dt=−H(z)(1+z)dz​
∫t1t2dt=−1H0∫z1z2dz(1+z)E(z)1/2\int_{t_1}^{t_2} d t=-\frac{1}{H_{0}} \int_{z_1}^{z_2} \frac{d z}{(1+z) E(z)^{1 / 2}}∫t1​t2​​dt=−H0​1​∫z1​z2​​(1+z)E(z)1/2dz​
t0=∫0t0dt=1H0∫0∞dz(1+z)E(z)1/2t_{0}=\int_{0}^{t_{0}} d t=\frac{1}{H_{0}} \int_{0}^{\infty} \frac{d z}{(1+z) E(z)^{1 / 2}}t0​=∫0t0​​dt=H0​1​∫0∞​(1+z)E(z)1/2dz​
t0=1H0∫0∞dz(1+z)5/2=23H0−1(1+z)−3/2∣∞0=23H0−1t_{0}=\frac{1}{H_{0}} \int_{0}^{\infty} \frac{d z}{(1+z)^{5 / 2}}=\frac{2}{3} H_{0}^{-1}\left.(1+z)^{-3 / 2}\right|_{\infty} ^{0}=\frac{2}{3} H_{0}^{-1}t0​=H0​1​∫0∞​(1+z)5/2dz​=32​H0−1​(1+z)−3/2​∞0​=32​H0−1​
dt=0dt=0dt=0
(ds)2=(cdt)2−a2(t)[dr21−kr2+r2(dθ2+sin⁡2θdϕ2)](d s)^{2}=(c d t)^{2}-a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right](ds)2=(cdt)2−a2(t)[1−kr2dr2​+r2(dθ2+sin2θdϕ2)]
s(t)=∫0sds′=a(t)∫0rdr(1−kr2)1/2s(t)=\int_{0}^{s} d s^{\prime}=a(t) \int_{0}^{r} \frac{d r}{\left(1-k r^{2}\right)^{1 / 2}}s(t)=∫0s​ds′=a(t)∫0r​(1−kr2)1/2dr​
s(t)=a(t)⋅{1ksin⁡−1(rk) for k>0r for k=01∣k∣sinh⁡−1(r∣k∣) for k<0s(t)=a(t)\cdot\left\{\begin{array}{cc}{\frac{1}{\sqrt{k}} \sin ^{-1}(r \sqrt{k})} & {\text { for } k>0} \\ {r} & {\text { for } k=0} \\ {\frac{1}{\sqrt{|k|}} \sinh ^{-1}(r \sqrt{|k|})} & {\text { for } k<0}\end{array}\right.s(t)=a(t)⋅⎩⎨⎧​k​1​sin−1(rk​)r∣k∣​1​sinh−1(r∣k∣​)​ for k>0 for k=0 for k<0​
∫0tdta(t)=1c∫0rhordr(1−kr2)1/2\int_{0}^{t} \frac{d t}{a(t)}=\frac{1}{c} \int_{0}^{r_{\mathrm{hor}}} \frac{d r}{\left(1-k r^{2}\right)^{1 / 2}}∫0t​a(t)dt​=c1​∫0rhor​​(1−kr2)1/2dr​
rhor={sin⁡(c∫0tdta(t)) for k=1c∫0tdta(t) for k=0sinh⁡(c∫0tdta(t)) for k=−1r_{\mathrm{hor}}=\left\{\begin{array}{cc}{\sin \left(c \int_{0}^{t} \frac{d t}{a(t)}\right)} & {\text { for } k=1} \\ {c \int_{0}^{t} \frac{d t}{a(t)}} & {\text { for } k=0} \\ {\sinh \left(c \int_{0}^{t} \frac{d t}{a(t)}\right)} & {\text { for } k=-1}\end{array}\right.rhor​=⎩⎨⎧​sin(c∫0t​a(t)dt​)c∫0t​a(t)dt​sinh(c∫0t​a(t)dt​)​ for k=1 for k=0 for k=−1​
adr=−cdt=−ca˙da=−cHada=−cHadadzdzadr=-cdt=-\frac{c}{\dot a}da=-\frac{c}{Ha}da=-\frac{c}{Ha}\frac{da}{dz}dzadr=−cdt=−a˙c​da=−Hac​da=−Hac​dzda​dz
dadz=−a2a0\frac{da}{dz}=-\frac{a^2}{a_0}dzda​=−a0​a2​
a0dr=cHdz=cH0E(z)1/2dza_0dr=\frac{c}{H}dz=\frac{c}{H_0E(z)^{1/2}}dza0​dr=Hc​dz=H0​E(z)1/2c​dz
r=cH0∫dzE(z)1/2r=\frac{c}{H_0}\int\frac{dz}{E(z)^{1/2}}r=H0​c​∫E(z)1/2dz​
r=c∫0tdta(t)r=c\int_{0}^{t} \frac{d t}{a(t)}r=c∫0t​a(t)dt​
shor(t)=a(t)∫0rhordr(1−kr2)1/2⇒shor(t)=a(t)∫0tcdta(t)s_{\mathrm{hor}}(t)=a(t) \int_{0}^{r_{\mathrm{hor}}} \frac{d r}{\left(1-k r^{2}\right)^{1 / 2}}\\ \Rightarrow s_{\mathrm{hor}}(t)=a(t) \int_{0}^{t} \frac{c d t}{a(t)}shor​(t)=a(t)∫0rhor​​(1−kr2)1/2dr​⇒shor​(t)=a(t)∫0t​a(t)cdt​
shor(t)=2cts_{\mathrm{hor}}(t)=2 c tshor​(t)=2ct
shor(t)=3cts_{\mathrm{hor}}(t)=3 c tshor​(t)=3ct
D=a(t1)r1δθD=a\left(t_{1}\right) r_{1} \delta \thetaD=a(t1​)r1​δθ
δθ=Da(t1)r1\delta \theta=\frac{D}{a\left(t_{1}\right) r_{1}}δθ=a(t1​)r1​D​
dA≡Dδθ=a(t1)r1=r11+zd_{\mathrm{A}} \equiv \frac{D}{\delta \theta}=a\left(t_{1}\right) r_{1}=\frac{r_{1}}{1+z}dA​≡δθD​=a(t1​)r1​=1+zr1​​
∫t1t0cdta(t)=c∫0zdzH(z)=1∣k∣1/2Sk−1(∣k∣1/2r1)\int_{t_{1}}^{t_{0}} \frac{c d t}{a(t)}=c \int_{0}^{z} \frac{d z}{H(z)}=\frac{1}{|k|^{1 / 2}} S_{k}^{-1}\left(|k|^{1 / 2} r_{1}\right)∫t1​t0​​a(t)cdt​=c∫0z​H(z)dz​=∣k∣1/21​Sk−1​(∣k∣1/2r1​)
Sk(x)={sin⁡(x) for k>0x for k=0sinh⁡(x) for k<0S_{k}(x)=\left\{\begin{array}{cc}{\sin (x)} & {\text { for } k>0} \\ {x} & {\text { for } k=0} \\ {\sinh (x)} & {\text { for } k<0}\end{array}\right.Sk​(x)=⎩⎨⎧​sin(x)xsinh(x)​ for k>0 for k=0 for k<0​
∣k∣1/2=H0cΩk,0|k|^{1 / 2}=\frac{H_{0}}{c} \sqrt{\Omega_{\mathrm{k}, 0}}∣k∣1/2=cH0​​Ωk,0​​
dA(z)=c∣Ωk,0∣H0(1+z)⋅Sk(H0∣Ωk,0∣∫0zdzH(z))d_{\mathrm{A}}(z)=\frac{c}{\sqrt{\left|\Omega_{\mathrm{k}, 0}\right|} H_{0}(1+z)} \cdot S_{k}\left(H_{0} \sqrt{\left|\Omega_{\mathrm{k}, 0}\right|} \int_{0}^{z} \frac{d z}{H(z)}\right)dA​(z)=∣Ωk,0​∣​H0​(1+z)c​⋅Sk​(H0​∣Ωk,0​∣​∫0z​H(z)dz​)
dA(z)=cH01(1+z)∫0zdz[Ωm,0(1+z)3+ΩΛ,0]1/2d_{\mathrm{A}}(z)=\frac{c}{H_{0}} \frac{1}{(1+z)} \int_{0}^{z} \frac{d z}{\left[\Omega_{\mathrm{m}, 0}(1+z)^{3}+\Omega_{\Lambda, 0}\right]^{1 / 2}}dA​(z)=H0​c​(1+z)1​∫0z​[Ωm,0​(1+z)3+ΩΛ,0​]1/2dz​
δθmin⁡=δθ(zm)=3.375H0Dc\delta \theta_{\min }=\delta \theta\left(z_{\mathrm{m}}\right)=3.375 \frac{H_{0} D}{c}δθmin​=δθ(zm​)=3.375cH0​D​
δθmin⁡=3.375⋅100h⋅13×105≃1.13×10−3h radians ≃4h arcmin \delta \theta_{\min }=\frac{3.375 \cdot 100 h \cdot 1}{3 \times 10^{5}} \simeq 1.13 \times 10^{-3} h \text { radians } \simeq 4 h \text { arcmin }δθmin​=3×1053.375⋅100h⋅1​≃1.13×10−3h radians ≃4h arcmin 
Fobs=L4πdL2F_{\mathrm{obs}}=\frac{L}{4 \pi d_{\mathrm{L}}^{2}}Fobs​=4πdL2​L​
A=4πr12A=4\pi r_1^2A=4πr12​
λ1λ0=δt1δt0=a1a0\frac{\lambda_{1}}{\lambda_{0}}=\frac{\delta t_{1}}{\delta t_{0}}=\frac{a_{1}}{a_{0}}λ0​λ1​​=δt0​δt1​​=a0​a1​​
hcλδt\frac{hc}{\lambda\delta t}λδthc​
a12a02\frac{a_{1}^{2}}{a_{0}^{2}}a02​a12​​
Fobs=L⋅14πa02r12⋅a12a02F_{\mathrm{obs}}=L \cdot \frac{1}{4 \pi a_{0}^{2} r_{1}^{2}} \cdot \frac{a_{1}^{2}}{a_{0}^{2}}Fobs​=L⋅4πa02​r12​1​⋅a02​a12​​
dL=r1a1=(1+z)r1d_{\mathrm{L}}=\frac{r_{1}}{a_1}=(1+z) r_{1}dL​=a1​r1​​=(1+z)r1​
dL(z)=c(1+z)∣Ωk,0∣H0Sk(H0∣Ωk,0∣∫0zdzH(z))=(1+z)2⋅dAd_{\mathrm{L}}(z)=\frac{c(1+z)}{\sqrt{\left|\Omega_{\mathrm{k}, 0}\right|} H_{0}} S_{k}\left(H_{0} \sqrt{\left|\Omega_{\mathrm{k}, 0}\right|} \int_{0}^{z} \frac{d z}{H(z)}\right)=(1+z)^{2} \cdot d_{\mathrm{A}}dL​(z)=∣Ωk,0​∣​H0​c(1+z)​Sk​(H0​∣Ωk,0​∣​∫0z​H(z)dz​)=(1+z)2⋅dA​
dP≃dA≃dL≃r1d_{\mathrm{P}} \simeq d_{\mathrm{A}} \simeq d_{\mathrm{L}} \simeq r_{1}dP​≃dA​≃dL​≃r1​
E(z)=Ωm,0(1+3z)+(1−Ωm,0−ΩΛ,0)(1+2z)+ΩΛ,0=1+2z(1+q0)E(z)=\Omega_{\mathrm{m}, 0}(1+3 z)+\left(1-\Omega_{\mathrm{m}, 0}-\Omega_{\Lambda, 0}\right)(1+2 z)+\Omega_{\Lambda, 0}=1+2z(1+q_0)E(z)=Ωm,0​(1+3z)+(1−Ωm,0​−ΩΛ,0​)(1+2z)+ΩΛ,0​=1+2z(1+q0​)
q0=Ωm,02−ΩΛ,0q_0=\frac{\Omega_{\mathrm{m}, 0}}{2}-\Omega_{\Lambda, 0}q0​=2Ωm,0​​−ΩΛ,0​
q(t)=−1H2a¨a=−aa¨a˙2q(t)=-\frac{1}{H^{2}} \frac{\ddot{a}}{a}=-a \frac{\ddot{a}}{\dot{a}^{2}}q(t)=−H21​aa¨​=−aa˙2a¨​
∫0zdzH(z)=1H0∫0zdzE(z)1/2≈1H0∫0z[1−z(q0+1)]dz≈1H0[z−(q0+1)z22]\int_{0}^{z} \frac{d z}{H(z)}=\frac{1}{H_{0}} \int_{0}^{z} \frac{d z}{E(z)^{1 / 2}} \approx \frac{1}{H_{0}} \int_{0}^{z}\left[1-z\left(q_{0}+1\right)\right] d z \approx \frac{1}{H_{0}}\left[z-\left(q_{0}+1\right) \frac{z^{2}}{2}\right]∫0z​H(z)dz​=H0​1​∫0z​E(z)1/2dz​≈H0​1​∫0z​[1−z(q0​+1)]dz≈H0​1​[z−(q0​+1)2z2​]
dL=(1+z)r1≈cH0[z+12(1−q0)z2+⋯ ]d_{\mathrm{L}}=(1+z) r_{1} \approx \frac{c}{H_{0}}\left[z+\frac{1}{2}\left(1-q_{0}\right) z^{2}+\cdots\right]dL​=(1+z)r1​≈H0​c​[z+21​(1−q0​)z2+⋯]