Chapter 5 Redshifts and Distances

Cosmological Redshifts

1+ze=a0a(t=e)1+z_e=\frac{a_0}{a(t=e)}

$e$ stands for the era when the photons were emitted

  • For r > 4200 Mpc, the receding velocity is larger than the speed of light

PROOF

  • RW metric

    (ds)2=(cdt)2a2(t)[dr21kr2+r2(dθ2+sin2θdϕ2)](d s)^{2}=(c d t)^{2}-a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
    • None geodesic means $ds=0$ - propagation of light

    • Observer $r=0$

    • Radial geodesic $d\theta=d\phi=0$

    Then the equation reduces to

    cdta(t)=±dr(1kr2)1/2\frac{c d t}{a(t)}=\pm \frac{d r}{\left(1-k r^{2}\right)^{1 / 2}}
  • Imagine one crest of the light wave was emitted at $(t_e, r_e)$ and received at $(t_0,0)$, and the next crest was emitted at $(t_e+dt_e, r_e)$ (the comoving distance did not change) and received at $(t_0+dt_0,0)$

  • The time it takes for successive crests to travel to earth

    tet0dta(t)=1cre0dr1kr2\int_{t_{e}}^{t_{0}} \frac{d t}{a(t)}=-\frac{1}{c} \int_{r_{e}}^{0} \frac{d r}{\sqrt{1-k r^{2}}}

    'minus' means the light travels toward us

    For the two crests we have

    te+Δtet0+Δt0dta(t)tet0dta(t)=0\int_{t_{e}+\Delta t_{e}}^{t_{0}+\Delta t_{0}} \frac{d t}{a(t)}-\int_{t_{e}}^{t_{0}} \frac{d t}{a(t)}=0

    But

    te+Δtet0+Δt0dta(t)=tet0dta(t)+t0t0+Δt0dta(t)tete+Δtedta(t)t0t0+Δt0dta(t)=tete+Δtedta(t)\int_{t_{e}+\Delta t_{e}}^{t_{0}+\Delta t_{0}} \frac{d t}{a(t)}=\int_{t_{e}}^{t_{0}} \frac{d t}{a(t)}+\int_{t_{0}}^{t_{0}+\Delta t_{0}} \frac{d t}{a(t)}-\int_{t_{e}}^{t_{e}+\Delta t_{e}} \frac{d t}{a(t)}\\ \Rightarrow \int_{t_{0}}^{t_{0}+\Delta t_{0}} \frac{d t}{a(t)}=\int_{t_{e}}^{t_{e}+\Delta t_{e}} \frac{d t}{a(t)}
  • $\Delta t_0$ and $\Delta t_e$ are so small that $a(t)$ is nearly a constant during those periods

    ΔteΔt0=a(te)a(t0)\frac{\Delta t_{e}}{\Delta t_{0}}=\frac{a\left(t_{e}\right)}{a\left(t_{0}\right)}
  • $\Delta t$ reflects the frequency, in fact

    λ=cΔt\lambda=c\Delta t

    and therefore

    λ0λe=1+z=a(t0)a(te)a(te)=(1+z)1\frac{\lambda_{0}}{\lambda_{e}}=1+z=\frac{a\left(t_{0}\right)}{a\left(t_{e}\right)}\Rightarrow a(t_e)=(1+z)^{-1}
  • $z$ as a measure for time

Time Evolution of the Hubble Parameter

  • Friedmann equation

    a˙2=H02Ωm,0a1+H02ΩΛ,0a2k\dot{a}^{2}=H_{0}^{2} \Omega_{\mathrm{m}, 0} a^{-1}+H_{0}^{2} \Omega_{\Lambda, 0} a^{2}-k

    The definition of $\Omega_k$

    Ωkk/(aH)2\Omega_{\mathrm{k}} \equiv-k /(a H)^{2}

    Then

    (H(z)H0)2=Ωm,0(1+z)3+Ωk,0(1+z)2+ΩΛ,0E(z)\left(\frac{H(z)}{H_{0}}\right)^{2}=\Omega_{\mathrm{m}, 0} \cdot(1+z)^{3}+\Omega_{\mathrm{k}, 0} \cdot(1+z)^{2}+\Omega_{\Lambda, 0}\equiv E(z)
    H(z)=H0E(z)1/2H(z)=H_{0} \cdot E(z)^{1 / 2}
    • Einstein-de Sitter cosmology ($\Omega_{m,0}=1$)

      H(z)=H0(1+z)3/2H(z)=H_{0} \cdot(1+z)^{3 / 2}
    • Today's consensus cosmology ($\Omega_{k,0}=0$)

      H(z)=H0Ωm,0(1+z)3+ΩΛ,0H(z)=H_{0} \cdot \sqrt{\Omega_{\mathrm{m}, 0} \cdot(1+z)^{3}+\Omega_{\Lambda, 0}}
    • A more general model including radiation

      H(z)H0=Ωm,0(1+z)3+Ωrad,0(1+z)4+Ωk,0(1+z)2+ΩΛ,0\frac{H(z)}{H_{0}}=\sqrt{\Omega_{\mathrm{m}, 0}(1+z)^{3}+\Omega_{\mathrm{rad}, 0}(1+z)^{4}+\Omega_{\mathrm{k}, 0}(1+z)^{2}+\Omega_{\Lambda, 0}}

      for radiation density reduces

      ρa4\rho\propto a^{-4}
      • Volume $V\propto a^{-3}$

      • Energy per photon $\epsilon\propto\nu\propto a^{-1}$

      • Only import at high redshift, early universe (high temperature) - radiation drives the early expansion

      Note that $\Omega{\mathrm{m}, 0}(1+z)^{3}\sim\Omega{\Lambda, 0}$ gives $z\sim0.3$, for smaller $z$ the dark energy dominates

Redshift vs. Time

  • The definition of Hubble parameter

    H(z)dadt1a=dadzdzdt(1+z)a0H(z) \equiv \frac{d a}{d t} \frac{1}{a}=\frac{d a}{d z} \frac{d z}{d t} \frac{(1+z)}{a_{0}}

    The scale factor

    a=a01+zda=a0(1+z)2dza=\frac{a_{0}}{1+z} \Rightarrow d a=-\frac{a_{0}}{(1+z)^{2}} d z

    and therefore

    dt=dzH(z)(1+z)d t=-\frac{d z}{H(z)(1+z)}
    t1t2dt=1H0z1z2dz(1+z)E(z)1/2\int_{t_1}^{t_2} d t=-\frac{1}{H_{0}} \int_{z_1}^{z_2} \frac{d z}{(1+z) E(z)^{1 / 2}}

    again, if $t_1>t_2$ we have $z_1<z_2$

  • The age of the Universe

    t0=0t0dt=1H00dz(1+z)E(z)1/2t_{0}=\int_{0}^{t_{0}} d t=\frac{1}{H_{0}} \int_{0}^{\infty} \frac{d z}{(1+z) E(z)^{1 / 2}}
    • Einstein-de Sitter model

      t0=1H00dz(1+z)5/2=23H01(1+z)3/20=23H01t_{0}=\frac{1}{H_{0}} \int_{0}^{\infty} \frac{d z}{(1+z)^{5 / 2}}=\frac{2}{3} H_{0}^{-1}\left.(1+z)^{-3 / 2}\right|_{\infty} ^{0}=\frac{2}{3} H_{0}^{-1}

Cosmological Distances

Proper Distance

dt=0dt=0

The distance between event A and B, which happens simultaneously - a universal time $t$ - only useful when $s/c\ll1/H$

  • RW Metric

    (ds)2=(cdt)2a2(t)[dr21kr2+r2(dθ2+sin2θdϕ2)](d s)^{2}=(c d t)^{2}-a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
    s(t)=0sds=a(t)0rdr(1kr2)1/2s(t)=\int_{0}^{s} d s^{\prime}=a(t) \int_{0}^{r} \frac{d r}{\left(1-k r^{2}\right)^{1 / 2}}
  • Three solutions

    s(t)=a(t){1ksin1(rk) for k>0r for k=01ksinh1(rk) for k<0s(t)=a(t)\cdot\left\{\begin{array}{cc}{\frac{1}{\sqrt{k}} \sin ^{-1}(r \sqrt{k})} & {\text { for } k>0} \\ {r} & {\text { for } k=0} \\ {\frac{1}{\sqrt{|k|}} \sinh ^{-1}(r \sqrt{|k|})} & {\text { for } k<0}\end{array}\right.
    • Flat universe, $k=0$, the proper distance is the coordinate distance

    • Positive curvature, $k=1$, $s(t)>a(t)\cdot r$

The Horizon

  • Proper distance to the furthest observable point, the particle horizon, at time $t$, is the horizon distance $S_h(t)$

  • $(0, r_{hor})\to(t,0)$, consider photons, $ds=0,d\theta=d\phi=0$

    0tdta(t)=1c0rhordr(1kr2)1/2\int_{0}^{t} \frac{d t}{a(t)}=\frac{1}{c} \int_{0}^{r_{\mathrm{hor}}} \frac{d r}{\left(1-k r^{2}\right)^{1 / 2}}

    for which we find that

    rhor={sin(c0tdta(t)) for k=1c0tdta(t) for k=0sinh(c0tdta(t)) for k=1r_{\mathrm{hor}}=\left\{\begin{array}{cc}{\sin \left(c \int_{0}^{t} \frac{d t}{a(t)}\right)} & {\text { for } k=1} \\ {c \int_{0}^{t} \frac{d t}{a(t)}} & {\text { for } k=0} \\ {\sinh \left(c \int_{0}^{t} \frac{d t}{a(t)}\right)} & {\text { for } k=-1}\end{array}\right.

    where $r_{hor}$ is the radial coordinate distance

  • If $k=0$

    adr=cdt=ca˙da=cHada=cHadadzdzadr=-cdt=-\frac{c}{\dot a}da=-\frac{c}{Ha}da=-\frac{c}{Ha}\frac{da}{dz}dz
    dadz=a2a0\frac{da}{dz}=-\frac{a^2}{a_0}

    Thus

    a0dr=cHdz=cH0E(z)1/2dza_0dr=\frac{c}{H}dz=\frac{c}{H_0E(z)^{1/2}}dz
    r=cH0dzE(z)1/2r=\frac{c}{H_0}\int\frac{dz}{E(z)^{1/2}}

    And

    r=c0tdta(t)r=c\int_{0}^{t} \frac{d t}{a(t)}
  • At 4300 Mpc, the receding velocity is larger than the speed of light, but the horizon is larger than 4300 Mpc

    • What we see NOW are the photons emitted in the past, when the universe was much smaller

  • If $a(t)\propto t^\alpha$ for small $t$ ($\alpha\ge1$), $r_{hor}$ diverges as we approach $t=0$ - no particle horizon

  • But if we consider the proper distance from the origin to $r_{hor}$

    shor(t)=a(t)0rhordr(1kr2)1/2shor(t)=a(t)0tcdta(t)s_{\mathrm{hor}}(t)=a(t) \int_{0}^{r_{\mathrm{hor}}} \frac{d r}{\left(1-k r^{2}\right)^{1 / 2}}\\ \Rightarrow s_{\mathrm{hor}}(t)=a(t) \int_{0}^{t} \frac{c d t}{a(t)}

    For zero curvature

    • In a radiational-dominated Universe, $a(t)\propto t^{1/2}$

      shor(t)=2cts_{\mathrm{hor}}(t)=2 c t
    • In a radiational-dominated Universe, $a(t)\propto t^{2/3}$

      shor(t)=3cts_{\mathrm{hor}}(t)=3 c t

    These distances are larger than $ct$

  • REASON: in order to actually measure the size of the visible Universe at the present time, we would have to devise some contrived scenario—such as adding up distances measured by observers spread throughout the Universe all making measurements at the same time

  • The event horizon - similar to the particle horizon, but set the limit on communications to the future

    • the particle horizon represents the largest comoving distance from which light could have reached the observer by a specific time

    • the event horizon is the largest comoving distance from which light emitted now can ever reach the observer in the future

    $t\to t_{max}$ - admissible time

    • finite for closed models

    • infinite for flat and open universe

Angular Diameter Distance

Consider a light source of size $D$ at $r=r_1, t=t_1$ subtending an angle $\delta\theta$ at the origin ($r=0,t=t_0$) . The proper distance between the two ends of object

D=a(t1)r1δθD=a\left(t_{1}\right) r_{1} \delta \theta

Angular diameter

δθ=Da(t1)r1\delta \theta=\frac{D}{a\left(t_{1}\right) r_{1}}

Angular diameter distance

dADδθ=a(t1)r1=r11+zd_{\mathrm{A}} \equiv \frac{D}{\delta \theta}=a\left(t_{1}\right) r_{1}=\frac{r_{1}}{1+z}
  • Consider again the propagation of light, $ds=0$

    t1t0cdta(t)=c0zdzH(z)=1k1/2Sk1(k1/2r1)\int_{t_{1}}^{t_{0}} \frac{c d t}{a(t)}=c \int_{0}^{z} \frac{d z}{H(z)}=\frac{1}{|k|^{1 / 2}} S_{k}^{-1}\left(|k|^{1 / 2} r_{1}\right)

    where

    Sk(x)={sin(x) for k>0x for k=0sinh(x) for k<0S_{k}(x)=\left\{\begin{array}{cc}{\sin (x)} & {\text { for } k>0} \\ {x} & {\text { for } k=0} \\ {\sinh (x)} & {\text { for } k<0}\end{array}\right.
    k1/2=H0cΩk,0|k|^{1 / 2}=\frac{H_{0}}{c} \sqrt{\Omega_{\mathrm{k}, 0}}

    Thus

    dA(z)=cΩk,0H0(1+z)Sk(H0Ωk,00zdzH(z))d_{\mathrm{A}}(z)=\frac{c}{\sqrt{\left|\Omega_{\mathrm{k}, 0}\right|} H_{0}(1+z)} \cdot S_{k}\left(H_{0} \sqrt{\left|\Omega_{\mathrm{k}, 0}\right|} \int_{0}^{z} \frac{d z}{H(z)}\right)
  • $d(z)$ depends on comological parameters $\Omega{\Lambda, 0}, \Omega{\mathrm{k}, 0}, \Omega{\mathrm{m}, 0}$, while $\Omega{k,0}=0$ according to the consensus cosmology today

    dA(z)=cH01(1+z)0zdz[Ωm,0(1+z)3+ΩΛ,0]1/2d_{\mathrm{A}}(z)=\frac{c}{H_{0}} \frac{1}{(1+z)} \int_{0}^{z} \frac{d z}{\left[\Omega_{\mathrm{m}, 0}(1+z)^{3}+\Omega_{\Lambda, 0}\right]^{1 / 2}}
  • In some cosmologies $dA(z)$ is not monotonically increasing function of $z$, for a given proper size $D$ will subtend a minimum angle $\delta\theta$ at $z=z{max}$

    • When the light rays were emitted, the universe was smaller and certain proper diameter distance occupied a larger coordinate size

    • $z_{max}$ stands for an emission distance equal to the particle horizon at the time of emission

    • Einstein-de Sitter cosmology - $z_{max}=1.25$

      δθmin=δθ(zm)=3.375H0Dc\delta \theta_{\min }=\delta \theta\left(z_{\mathrm{m}}\right)=3.375 \frac{H_{0} D}{c}

      A galaxy cluster of typical diameter 1 Mpc, would never subtend on the sky an angle smaller than

      δθmin=3.375100h13×1051.13×103h radians 4h arcmin \delta \theta_{\min }=\frac{3.375 \cdot 100 h \cdot 1}{3 \times 10^{5}} \simeq 1.13 \times 10^{-3} h \text { radians } \simeq 4 h \text { arcmin }

Luminosity Distance

Fobs=L4πdL2F_{\mathrm{obs}}=\frac{L}{4 \pi d_{\mathrm{L}}^{2}}

$L$ is the absolute bolometric luminosity (all wavelengths), but is not observable, and $F$ is the observed flux

  • The photons emitted are spread out over the surface of a sphere

    A=4πr12A=4\pi r_1^2
  • but the total power received at $r_1$ is not the same with the total power emitted because of the red shift

    • Emitted - wavelength $\lambda_1$ in time interval $\delta t_1$

    • Received - wavelength $\lambda_0$ in time interval $\delta t_0$

    • Wavelengths and time intervals are related by

      λ1λ0=δt1δt0=a1a0\frac{\lambda_{1}}{\lambda_{0}}=\frac{\delta t_{1}}{\delta t_{0}}=\frac{a_{1}}{a_{0}}

      while the energy of a single photon is $hc/\lambda$, the energy emitted/received in time interval $\delta t$ is thus

      hcλδt\frac{hc}{\lambda\delta t}

      hence the ratio of received flux and emitted flux is

      a12a02\frac{a_{1}^{2}}{a_{0}^{2}}
  • The flux measured on the surface of the sphere is then

    Fobs=L14πa02r12a12a02F_{\mathrm{obs}}=L \cdot \frac{1}{4 \pi a_{0}^{2} r_{1}^{2}} \cdot \frac{a_{1}^{2}}{a_{0}^{2}}

    for $a_0=1$, we have

    dL=r1a1=(1+z)r1d_{\mathrm{L}}=\frac{r_{1}}{a_1}=(1+z) r_{1}

    or

    dL(z)=c(1+z)Ωk,0H0Sk(H0Ωk,00zdzH(z))=(1+z)2dAd_{\mathrm{L}}(z)=\frac{c(1+z)}{\sqrt{\left|\Omega_{\mathrm{k}, 0}\right|} H_{0}} S_{k}\left(H_{0} \sqrt{\left|\Omega_{\mathrm{k}, 0}\right|} \int_{0}^{z} \frac{d z}{H(z)}\right)=(1+z)^{2} \cdot d_{\mathrm{A}}

The deceleration parameter

  • $r_1$ - radial distance

  • $d_P$ - proper distance

  • $d_A$ - angular distance

  • $d_L$ - luminosity distance

  • For small $z$ and small $r_1$

    dPdAdLr1d_{\mathrm{P}} \simeq d_{\mathrm{A}} \simeq d_{\mathrm{L}} \simeq r_{1}
  • For small $z$, using Taylor expansion

    E(z)=Ωm,0(1+3z)+(1Ωm,0ΩΛ,0)(1+2z)+ΩΛ,0=1+2z(1+q0)E(z)=\Omega_{\mathrm{m}, 0}(1+3 z)+\left(1-\Omega_{\mathrm{m}, 0}-\Omega_{\Lambda, 0}\right)(1+2 z)+\Omega_{\Lambda, 0}=1+2z(1+q_0)

    where

    q0=Ωm,02ΩΛ,0q_0=\frac{\Omega_{\mathrm{m}, 0}}{2}-\Omega_{\Lambda, 0}
  • The parameter

    q(t)=1H2a¨a=aa¨a˙2q(t)=-\frac{1}{H^{2}} \frac{\ddot{a}}{a}=-a \frac{\ddot{a}}{\dot{a}^{2}}

    is called deceleration parameter

    • $q<0$ , acceleration of expansion

    • $q>0$, slowing down of expansion

    • At present - accelerating

  • The approximation of luminosity distance for small $z$

    0zdzH(z)=1H00zdzE(z)1/21H00z[1z(q0+1)]dz1H0[z(q0+1)z22]\int_{0}^{z} \frac{d z}{H(z)}=\frac{1}{H_{0}} \int_{0}^{z} \frac{d z}{E(z)^{1 / 2}} \approx \frac{1}{H_{0}} \int_{0}^{z}\left[1-z\left(q_{0}+1\right)\right] d z \approx \frac{1}{H_{0}}\left[z-\left(q_{0}+1\right) \frac{z^{2}}{2}\right]
    dL=(1+z)r1cH0[z+12(1q0)z2+]d_{\mathrm{L}}=(1+z) r_{1} \approx \frac{c}{H_{0}}\left[z+\frac{1}{2}\left(1-q_{0}\right) z^{2}+\cdots\right]

Last updated