Chapter 4 World Models
Last updated
Last updated
Scalar factor: $a(t)$ natural units: $c=1$
$k=0$, flat
define $\Omegai\equiv\rho_i/\rho\text{crit}$
all are functions of time. Deriving
define
Friedmann-Robertson-Walker: FRW models
Assuming pressureless matter $ P=0$
define $a_0\equiv1$
$\Lambda>0$
do integration to $u$, derive
For small $t$, $a\propto t^{2/3}$
For large $t$, $a\propto e^{[(\Lambda)/3]^{1/2}t}$
$\Lambda<0$
For small $t$, $a\propto t^{2/3}$
For large $t$, $a\propto -e^{[(-\Lambda)/3]^{1/2}t}$
$\Lambda=0$ Einstein-de Sitter
A flat, pressureless universe with a small, but non-zero, cosmological constant initially evolves as if it were Einstein-deSitter
$\Omega_{k,0}>0, k<0$, negative curvature
$a$ grows linearly with time
$\Omega_{k,0}0$, positive curvature
let $\dot a=0$, derive $a_{max}$
The age of universe can be an indirect proof for acceleration of universe expansion, for only universe with high $\Omega_\Lambda$ can give a universe age old enough (global cluster)
$\Omega_{m,0}$
$\Omega_{\Lambda,0}$
$\Omega_{k,0}$
Concordance cosmology
1
0.3
0.7
0
$a\propto\exp[(\Lambda/3)^{1/2}t]$
2
0.3
0
0.7
$a\propto t$
3
1
0
0
$a = \left(\frac{9}{4}H_0^2t^2\right)^{1/3}$
4
4
0
-3
$a_{max}=4/3$