Notes
  • Notes
  • 恒星结构与演化
    • Chapter 7. Equation of State
    • Chapter 3. Virial Theorem
    • Chapter 11. Main Sequence
    • Chapter 4. Energy Conservation
    • Chapter 12. Post-Main Sequence
    • Chapter 2. Hydrostatic Equilibrium
    • Chapter 6. Convection
    • Chapter 9. Nuclear Reactions
    • Chapter 10 Polytrope
    • Chapter 8. Opacity
    • Chapter 14. Protostar
    • Chapter 13. Star Formation
    • Chapter 5. Energy Transport
  • 天体光谱学
    • Chapter 6 气体星云光谱
    • Chapter 5 磁场中的光谱
    • Chapter 7 X-射线光谱
    • Chapter 3 碱金属原子
    • Chapter 1 光谱基础知识
    • Chapter 9 分子光谱
    • Chapter 4 复杂原子
    • Chapter 2 氢原子光谱
  • 物理宇宙学基础
    • Chapter 2 Newtonian Cosmology
    • Chapter 1 Introduction
    • Chapter 5* Monochromatic Flux, K-correction
    • Chapter 9 Dark Matter
    • Chapter 10 Recombination and CMB
    • Chapter 8 Primordial Nucleosynthesis
    • Chapter 7 Thermal History of the Universe
    • Chapter 6 Supernova cosmology
    • Chapter 5 Redshifts and Distances
    • Chapter 4 World Models
    • Chapter 3 Relativistic Cosmology
  • 数理统计
    • Chapter 6. Confidence Sets (Intervals) 置信区间
    • Chapter 1. Data Reduction 数据压缩
    • Chapter 7. Two Sample Comparisons 两个样本的比较
    • Chapter 3. Decision Theory 统计决策
    • Chapter 4. Asymptotic Theory 渐近理论
    • Chapter 5. Hypothesis Testing 假设检验
    • Chapter 9. Linear Models 线性模型
    • Chapter 10 Model Selection 模型选择
    • Chapter 2. Estimation 估计
    • Chapter 11 Mathematical Foundation in Causal Inference 因果推断中的数理基础
    • Chapter 8. Analysis of Variance 方差分析
  • 天体物理动力学
    • Week8: Orbits
    • Week7: Orbits
    • Week6: Orbits
    • Week5: Orbits
    • Week4: Orbits
    • Week3: Potential Theory
    • Week2
    • Week1
  • 天体物理吸积过程
    • Chapter 4. Spherically Symmetric Flow
    • Chapter 2. Fluid Dynamics
    • Chapter 5. Accretion Disk Theory
    • Chapter 3. Compressible Fluid
  • 天文技术与方法
    • Chapter1-7
  • 理论天体物理
    • Chapter 6 生长曲线的理论和应用
    • Chapter 5 线吸收系数
    • Chapter 4 吸收线内的辐射转移
    • Chapter 3 恒星大气模型和恒星连续光谱
    • Chapter 2 恒星大气的连续不透明度
    • Chapter 1 恒星大气辐射理论基础
  • 常微分方程
    • 线性微分方程组
    • 高阶微分方程
    • 奇解
    • 存在和唯一性定理
    • 初等积分法
    • 基本概念
  • 天体物理观测实验
Powered by GitBook
On this page
  • Flat FRW Cosmologies
  • Cosmologies with $k\neq0, \Lambda=0$
  1. 物理宇宙学基础

Chapter 4 World Models

PreviousChapter 5 Redshifts and DistancesNextChapter 3 Relativistic Cosmology

Last updated 4 years ago

  • Scalar factor: $a(t)$ natural units: $c=1$

    (a˙a)2+ka2=8π3GρH(t)≡a˙a,ρΛ=Λ8πGH2+ka2=8πG3(∑iρi+ρΛ)\left(\frac{\dot a}{a}\right)^2 + \frac{k}{a^2} = \frac{8\pi}{3}G\rho\\ H(t)\equiv \frac{\dot a}{a},\quad \rho_\Lambda=\frac{\Lambda}{8\pi G}\\ H^2 + \frac{k}{a^2} = \frac{8\pi G}{3}\left(\sum_i\rho_i+\rho_\Lambda\right)(aa˙​)2+a2k​=38π​GρH(t)≡aa˙​,ρΛ​=8πGΛ​H2+a2k​=38πG​(i∑​ρi​+ρΛ​)

    $k=0​$, flat

    ρtot=∑iρi+ρΛ=3H28πG≡ρcrit\rho_\text{tot} = \sum_i\rho_i+\rho_\Lambda=\frac{3H^2}{8\pi G}\equiv\rho_\text{crit}ρtot​=i∑​ρi​+ρΛ​=8πG3H2​≡ρcrit​

    define $\Omegai\equiv\rho_i/\rho\text{crit}​$

    {Ωm:matterΩr:radiationΩΛ:dark energy\left\{ \begin{aligned} &\Omega_m: \text{matter}\\ &\Omega_r: \text{radiation}\\ &\Omega_\Lambda: \text{dark energy} \end{aligned} \right.⎩⎨⎧​​Ωm​:matterΩr​:radiationΩΛ​:dark energy​

    all are functions of time. Deriving

    ka2H2=∑iΩi+ΩΛ−1\frac{k}{a^2H^2}=\sum_i\Omega_i + \Omega_\Lambda - 1a2H2k​=i∑​Ωi​+ΩΛ​−1

    define

    Ωk≡−k/a2H2⇒∑iΩi+ΩΛ+Ωk=1\Omega_k \equiv -k/a^2H^2\\ \Rightarrow \sum_i\Omega_i+\Omega_\Lambda+\Omega_k=1Ωk​≡−k/a2H2⇒i∑​Ωi​+ΩΛ​+Ωk​=1

Flat FRW Cosmologies

  • Friedmann-Robertson-Walker: FRW models

  • Assuming pressureless matter $ P=0$

    define $a_0\equiv1$

    • $\Lambda>0$

      do integration to $u$, derive

      • For small $t$, $a\propto t^{2/3}$

        • For large $t$, $a\propto e^{[(\Lambda)/3]^{1/2}t}$

    • $\Lambda<0$

      • For small $t$, $a\propto t^{2/3}$

      • For large $t$, $a\propto -e^{[(-\Lambda)/3]^{1/2}t}​$

    • $\Lambda=0​$ Einstein-de Sitter

      • A flat, pressureless universe with a small, but non-zero, cosmological constant initially evolves as if it were Einstein-deSitter

Cosmologies with $k\neq0, \Lambda=0$

  • $\Omega_{k,0}>0, k<0$, negative curvature

    $a$ grows linearly with time

  • $\Omega_{k,0}0​$, positive curvature

    let $\dot a=0$, derive $a_{max}$

$\Omega_{m,0}$

$\Omega_{\Lambda,0}$

$\Omega_{k,0}$

Concordance cosmology

1

0.3

0.7

0

$a\propto\exp[(\Lambda/3)^{1/2}t]$

2

0.3

0

0.7

$a\propto t$

3

1

0

0

$a = \left(\frac{9}{4}H_0^2t^2\right)^{1/3}$

4

4

0

-3

$a_{max}=4/3$

  • The age of universe can be an indirect proof for acceleration of universe expansion, for only universe with high $\Omega_\Lambda$ can give a universe age old enough (global cluster)

ρm=ρm,0(aa0)−3\rho_m = \rho_{m,0}\left(\frac{a}{a_0}\right)^{-3}ρm​=ρm,0​(a0​a​)−3
(a˙a)2=8πG3ρm,0a−3+Λ3a˙2=H02Ωm,0a−1+H02ΩΛ,0a2Ωm,0+ΩΛ,0=1\left(\frac{\dot a}{a}\right)^2 = \frac{8\pi G}{3}\rho_{m,0}a^{-3}+\frac{\Lambda}{3}\\ \dot a^2=H_0^2\Omega_{m,0}a^{-1} + H_0^2\Omega_{\Lambda,0}a^2\\ \Omega_{m,0}+\Omega_{\Lambda,0}=1(aa˙​)2=38πG​ρm,0​a−3+3Λ​a˙2=H02​Ωm,0​a−1+H02​ΩΛ,0​a2Ωm,0​+ΩΛ,0​=1
u=2ΩΛ,0Ωm,0a3u˙2=9H02ΩΛ,0(2u+u2)=3Λ(2u+u2)u=\frac{2\Omega_{\Lambda,0}}{\Omega_{m,0}}a^3\\ \dot u^2 = 9H_0^2\Omega_{\Lambda,0}(2u+u^2)=3\Lambda(2u+u^2)u=Ωm,0​2ΩΛ,0​​a3u˙2=9H02​ΩΛ,0​(2u+u2)=3Λ(2u+u2)
a3=Ωm,02ΩΛ,0[cosh⁡(3Λ)1/2t−1]a^3=\frac{\Omega_{m,0}}{2\Omega_{\Lambda,0}}[\cosh(3\Lambda)^{1/2}t-1]a3=2ΩΛ,0​Ωm,0​​[cosh(3Λ)1/2t−1]
u=−2ΩΛ,0Ωm,0a3a3=Ωm,02(−ΩΛ,0){1−cosh⁡[3(−Λ)]1/2t}u=-\frac{2\Omega_{\Lambda,0}}{\Omega_{m,0}}a^3\\ a^3=\frac{\Omega_{m,0}}{2(-\Omega_{\Lambda,0})}\{1-\cosh[3(-\Lambda)]^{1/2}t\}u=−Ωm,0​2ΩΛ,0​​a3a3=2(−ΩΛ,0​)Ωm,0​​{1−cosh[3(−Λ)]1/2t}
a=(tt0)2/3t0=23H0a=(94H02t2)1/3a = \left(\frac{t}{t_0}\right)^{2/3}\\ t_0=\frac{2}{3H_0}\\ a = \left(\frac{9}{4}H_0^2t^2\right)^{1/3}a=(t0​t​)2/3t0​=3H0​2​a=(49​H02​t2)1/3
(a˙a)2+ka2=8πG3ρa˙2=Ωm,0H02a−1−k=Ωm,0H02a−1+Ωk,0H02Ωm,0+Ωk,0=1\left(\frac{\dot a}{a}\right)^2+\frac{k}{a^2}=\frac{8\pi G}{3}\rho\\ \dot a^2=\Omega_{m,0}H_0^2a^{-1}-k=\Omega_{m,0}H_0^2a^{-1}+\Omega_{k,0}H_0^2\\ \Omega_{m,0}+\Omega_{k,0} = 1(aa˙​)2+a2k​=38πG​ρa˙2=Ωm,0​H02​a−1−k=Ωm,0​H02​a−1+Ωk,0​H02​Ωm,0​+Ωk,0​=1
a˙2∼Ωk,0H02=−k>0, a∝t\dot a^2\sim\Omega_{k,0}H_0^2=-k>0, \ a\propto ta˙2∼Ωk,0​H02​=−k>0, a∝t
amax⁡=Ωm,0∣Ωk,0∣a_{\max }=\frac{\Omega_{\mathrm{m}, 0}}{\left|\Omega_{\mathrm{k}, 0}\right|}amax​=∣Ωk,0​∣Ωm,0​​