Chapter 4 World Models
Scalar factor: $a(t)$ natural units: $c=1$
(aa˙)2+a2k=38πGρH(t)≡aa˙,ρΛ=8πGΛH2+a2k=38πG(i∑ρi+ρΛ)$k=0$, flat
ρtot=i∑ρi+ρΛ=8πG3H2≡ρcritdefine $\Omegai\equiv\rho_i/\rho\text{crit}$
⎩⎨⎧Ωm:matterΩr:radiationΩΛ:dark energyall are functions of time. Deriving
a2H2k=i∑Ωi+ΩΛ−1define
Ωk≡−k/a2H2⇒i∑Ωi+ΩΛ+Ωk=1
Flat FRW Cosmologies
Friedmann-Robertson-Walker: FRW models
Assuming pressureless matter $ P=0$
ρm=ρm,0(a0a)−3define $a_0\equiv1$
(aa˙)2=38πGρm,0a−3+3Λa˙2=H02Ωm,0a−1+H02ΩΛ,0a2Ωm,0+ΩΛ,0=1$\Lambda>0$
u=Ωm,02ΩΛ,0a3u˙2=9H02ΩΛ,0(2u+u2)=3Λ(2u+u2)do integration to $u$, derive
a3=2ΩΛ,0Ωm,0[cosh(3Λ)1/2t−1]For small $t$, $a\propto t^{2/3}$
For large $t$, $a\propto e^{[(\Lambda)/3]^{1/2}t}$
$\Lambda<0$
u=−Ωm,02ΩΛ,0a3a3=2(−ΩΛ,0)Ωm,0{1−cosh[3(−Λ)]1/2t}For small $t$, $a\propto t^{2/3}$
For large $t$, $a\propto -e^{[(-\Lambda)/3]^{1/2}t}$
$\Lambda=0$ Einstein-de Sitter
a=(t0t)2/3t0=3H02a=(49H02t2)1/3A flat, pressureless universe with a small, but non-zero, cosmological constant initially evolves as if it were Einstein-deSitter
Cosmologies with $k\neq0, \Lambda=0$
$\Omega_{k,0}>0, k<0$, negative curvature
a˙2∼Ωk,0H02=−k>0, a∝t$a$ grows linearly with time
$\Omega_{k,0}0$, positive curvature
let $\dot a=0$, derive $a_{max}$
amax=∣Ωk,0∣Ωm,0

$\Omega_{m,0}$
$\Omega_{\Lambda,0}$
$\Omega_{k,0}$
Concordance cosmology
1
0.3
0.7
0
$a\propto\exp[(\Lambda/3)^{1/2}t]$
2
0.3
0
0.7
$a\propto t$
3
1
0
0
$a = \left(\frac{9}{4}H_0^2t^2\right)^{1/3}$
4
4
0
-3
$a_{max}=4/3$
The age of universe can be an indirect proof for acceleration of universe expansion, for only universe with high $\Omega_\Lambda$ can give a universe age old enough (global cluster)
Last updated