Chapter 4 World Models

  • Scalar factor: $a(t)$ natural units: $c=1$

    (a˙a)2+ka2=8π3GρH(t)a˙a,ρΛ=Λ8πGH2+ka2=8πG3(iρi+ρΛ)\left(\frac{\dot a}{a}\right)^2 + \frac{k}{a^2} = \frac{8\pi}{3}G\rho\\ H(t)\equiv \frac{\dot a}{a},\quad \rho_\Lambda=\frac{\Lambda}{8\pi G}\\ H^2 + \frac{k}{a^2} = \frac{8\pi G}{3}\left(\sum_i\rho_i+\rho_\Lambda\right)

    $k=0​$, flat

    ρtot=iρi+ρΛ=3H28πGρcrit\rho_\text{tot} = \sum_i\rho_i+\rho_\Lambda=\frac{3H^2}{8\pi G}\equiv\rho_\text{crit}

    define $\Omegai\equiv\rho_i/\rho\text{crit}​$

    {Ωm:matterΩr:radiationΩΛ:dark energy\left\{ \begin{aligned} &\Omega_m: \text{matter}\\ &\Omega_r: \text{radiation}\\ &\Omega_\Lambda: \text{dark energy} \end{aligned} \right.

    all are functions of time. Deriving

    ka2H2=iΩi+ΩΛ1\frac{k}{a^2H^2}=\sum_i\Omega_i + \Omega_\Lambda - 1

    define

    Ωkk/a2H2iΩi+ΩΛ+Ωk=1\Omega_k \equiv -k/a^2H^2\\ \Rightarrow \sum_i\Omega_i+\Omega_\Lambda+\Omega_k=1

Flat FRW Cosmologies

  • Friedmann-Robertson-Walker: FRW models

  • Assuming pressureless matter $ P=0$

    ρm=ρm,0(aa0)3\rho_m = \rho_{m,0}\left(\frac{a}{a_0}\right)^{-3}

    define $a_0\equiv1$

    (a˙a)2=8πG3ρm,0a3+Λ3a˙2=H02Ωm,0a1+H02ΩΛ,0a2Ωm,0+ΩΛ,0=1\left(\frac{\dot a}{a}\right)^2 = \frac{8\pi G}{3}\rho_{m,0}a^{-3}+\frac{\Lambda}{3}\\ \dot a^2=H_0^2\Omega_{m,0}a^{-1} + H_0^2\Omega_{\Lambda,0}a^2\\ \Omega_{m,0}+\Omega_{\Lambda,0}=1
    • $\Lambda>0$

      u=2ΩΛ,0Ωm,0a3u˙2=9H02ΩΛ,0(2u+u2)=3Λ(2u+u2)u=\frac{2\Omega_{\Lambda,0}}{\Omega_{m,0}}a^3\\ \dot u^2 = 9H_0^2\Omega_{\Lambda,0}(2u+u^2)=3\Lambda(2u+u^2)

      do integration to $u$, derive

      a3=Ωm,02ΩΛ,0[cosh(3Λ)1/2t1]a^3=\frac{\Omega_{m,0}}{2\Omega_{\Lambda,0}}[\cosh(3\Lambda)^{1/2}t-1]
      • For small $t$, $a\propto t^{2/3}$

        • For large $t$, $a\propto e^{[(\Lambda)/3]^{1/2}t}$

    • $\Lambda<0$

      u=2ΩΛ,0Ωm,0a3a3=Ωm,02(ΩΛ,0){1cosh[3(Λ)]1/2t}u=-\frac{2\Omega_{\Lambda,0}}{\Omega_{m,0}}a^3\\ a^3=\frac{\Omega_{m,0}}{2(-\Omega_{\Lambda,0})}\{1-\cosh[3(-\Lambda)]^{1/2}t\}
      • For small $t$, $a\propto t^{2/3}$

      • For large $t$, $a\propto -e^{[(-\Lambda)/3]^{1/2}t}​$

    • $\Lambda=0​$ Einstein-de Sitter

      a=(tt0)2/3t0=23H0a=(94H02t2)1/3a = \left(\frac{t}{t_0}\right)^{2/3}\\ t_0=\frac{2}{3H_0}\\ a = \left(\frac{9}{4}H_0^2t^2\right)^{1/3}
      • A flat, pressureless universe with a small, but non-zero, cosmological constant initially evolves as if it were Einstein-deSitter

Cosmologies with $k\neq0, \Lambda=0$

(a˙a)2+ka2=8πG3ρa˙2=Ωm,0H02a1k=Ωm,0H02a1+Ωk,0H02Ωm,0+Ωk,0=1\left(\frac{\dot a}{a}\right)^2+\frac{k}{a^2}=\frac{8\pi G}{3}\rho\\ \dot a^2=\Omega_{m,0}H_0^2a^{-1}-k=\Omega_{m,0}H_0^2a^{-1}+\Omega_{k,0}H_0^2\\ \Omega_{m,0}+\Omega_{k,0} = 1
  • $\Omega_{k,0}>0, k<0$, negative curvature

    a˙2Ωk,0H02=k>0, at\dot a^2\sim\Omega_{k,0}H_0^2=-k>0, \ a\propto t

    $a$ grows linearly with time

  • $\Omega_{k,0}0​$, positive curvature

    let $\dot a=0$, derive $a_{max}$

    amax=Ωm,0Ωk,0a_{\max }=\frac{\Omega_{\mathrm{m}, 0}}{\left|\Omega_{\mathrm{k}, 0}\right|}

$\Omega_{m,0}$

$\Omega_{\Lambda,0}$

$\Omega_{k,0}$

Concordance cosmology

1

0.3

0.7

0

$a\propto\exp[(\Lambda/3)^{1/2}t]$

2

0.3

0

0.7

$a\propto t$

3

1

0

0

$a = \left(\frac{9}{4}H_0^2t^2\right)^{1/3}$

4

4

0

-3

$a_{max}=4/3$

  • The age of universe can be an indirect proof for acceleration of universe expansion, for only universe with high $\Omega_\Lambda$ can give a universe age old enough (global cluster)

Last updated